[[授業]]

*Advanced Automation [#ye2d4ebb]

** &color(green){[lecture #1]}; 2015.9.3 outline of the lecture, review of classical and modern control theory (1/3) [#bdb8b1f6]

- outline of this lecture 
-- syllabus
-- evaluation
--- mini report #1 ... 10%
--- mini exam #1 ... 10%
--- mini report #2 ... 10%
--- mini exam #2 ... 10%
--- final report ... 60% 
-- [[schedule2015]] (tentative)
-- map
#ref(map_v1.0_review.pdf);

- review : stabilization of 1st-order unstable plant by classical and modern control theory 
-- transfer function
-- differential equation
-- eigenvalue and pole
-- ...

 %-- 9/3/2015 2:09 PM --%
 s = tf('s')
 Ptf = 1/(s+1)
 pole(Ptf)
 impulse(Ptf)
 Pss = ss(Ptf)
 initial(Pss, 1)
 initial(Pss, 2)

#ref(2015.09.03-1.jpg,left,noimg,whiteboard #1);
#ref(2015.09.03-2.jpg,left,noimg,whiteboard #2);
#ref(2015.09.03-3.jpg,left,noimg,whiteboard #3);
#ref(2015.09.03-4.jpg,left,noimg,whiteboard #4);

&ref(ex0902.m);


** &color(green){[lecture #2]}; 2015.9.10 review of classical and modern control theory (2/3) with introduction of Matlab/Simulink [#x66b415e]

+ introduction of Matlab and Simulink
&ref(text_fixed.pdf); Basic usage of MATLAB and Simulink used for 情報処理演習及び考究II/Consideration and Practice of Information Processing II: Advanced Course of MATLAB
-- interactive system (no compilation, no variable difinition)
-- m file
//
+ system representation: Transfer Function(TF) / State-Space Representation (SSR)
//
-- example: mass-spring-damper system
-- difinition of SSR
-- from SSR to TF
-- from TF to SSR: controllable canonical form
+ open-loop characteristic
-- open-loop stability: poles and eigenvalues
-- Bode plot and frequency response &ref(ex0910_1.m); &ref(mod0910_1.mdl);
--- cut off frequency; DC gain; -40dB/dec; variation of c
--- relation between P(jw) and steady-state response
+ closed-loop stability
-- Nyquist stability criterion (for L(s):stable)
-- Nyquist plot &ref(ex0910_2.m); &ref(mod0910_2.mdl);
--- Gain Margin(GM); Phase Margin(PM)

 %-- 9/10/2015 1:55 PM --%
 ex0910_1
 P
 P.den
 P.den{:}
 P.num{:}
 ex0910_1
 ex0910_2

#ref(2015.09.10-1.jpg,left,noimg,whiteboard #1);
#ref(2015.09.10-2.jpg,left,noimg,whiteboard #2);
#ref(2015.09.10-3.jpg,left,noimg,whiteboard #3);
#ref(2015.09.10-4.jpg,left,noimg,whiteboard #4);

** &color(green){[]}; 2015.9.17 cancelled [#w7af2c97]

** &color(green){[]}; 2015.9.25 no lecture (lectures for Monday are given) [#ne6e400c]


** &color(green){[lecture #3]}; 2015.10.1 review of classical and modern control theory (3/3) [#b83a9a65]

+ LQR problem
-- controllability
-- cost function J >= 0
-- (semi)-positive definiteness
+ solution of LQR problem
-- ARE and quadratic equation
-- closed loop stability ... Lyapunov criterion
-- Jmin
&ref(lqr.pdf); ≒ &ref(proof4.pdf); (from B3「動的システムの解析と制御」)
+ example
&ref(mod1001.mdl);
 A = [1, 2; 0, -1]; % unstable plant
 B = [0; 1];
 Uc = ctrb(A,B);
 det(Uc) % should be nonzero
 C = eye(2); % dummy
 D = zeros(2,1); % dummy
 F = [0, 0]; % without control
 x0 = [1; 1]; % initial state
 Q = eye(2);
 R = 1;
 P = are(A, B/R*B', Q);
 eig(P) % should be positive
 F = R\B'*P;
 x0'*P*x0

 %-- 10/1/2015 2:08 PM --%
 mod1001
 A = [1, 2; 0, -1]; % unstable plant
 B = [0; 1];
 Uc = ctrb(A,B);
 A
 B
 Uc
 det(Uc)
 C = eye(2); % dummy
 D = zeros(2,1); % dummy
 F = [0, 0]; % without control
 x0 = [1; 1]; % initial state
 Q = eye(2);
 R = 1;
 F
 P = are(A, B/R*B', Q);
 P
 eig(P)
 F = R\B'*P;
 F
 J
 x0
 x0'*P*x0
 A-B*F
 eig(A-B*F)

#ref(2015.10.01-1.jpg,left,noimg,whiteboard #1);
#ref(2015.10.01-2.jpg,left,noimg,whiteboard #2);
#ref(2015.10.01-3.jpg,left,noimg,whiteboard #3);
... I'm sorry but all of equations are in the pdf file.
#ref(2015.10.01-4.jpg,left,noimg,whiteboard #4);
#ref(2015.10.01-5.jpg,left,noimg,whiteboard #5);

** &color(green){[lecture #4]}; 2015.10.8 relation between LQR and H infinity control problem (1/2) [#d821c8a6]

- GOAL: to learn difference in concepts between LQR problem and H infinity control problem
- review of LQR problem and the simple example
+ an equivalent problem
+ a simple example of state-feedback H infinity control problem
+ definition of H infinity norm (SISO)
 s = tf('s');
 P1 = 1/(s+1);
 bode(P1);
 norm(P1, 'inf')
 P2 = 1/(s^2 + 0.1*s + 1);
 bode(P2);
 norm(P2, 'inf')
+ definition of H infinity norm (SIMO)
+ solve the problem by hand
+ solve the problem by tool(hinfsyn)
&ref(ex1008.m);

 %-- 10/8/2015 1:48 PM --%
 s = tf('s');
 P1 = 1/(s+1);
 bode(P1);
 norm(P1, 'inf')
 P2 = 1/(s^2 + 0.1*s + 1);
 bode(P2);
 norm(P2, 'inf')
 ex1008

#ref(2015.10.08-1.jpg,left,noimg,whiteboard #1);
#ref(2015.10.08-2.jpg,left,noimg,whiteboard #2);
#ref(2015.10.08-3.jpg,left,noimg,whiteboard #3);
#ref(2015.10.08-4.jpg,left,noimg,whiteboard #4);
#ref(2015.10.08-5.jpg,left,noimg,whiteboard #5);

-Q: 最後にfを求めてどうするのか分からなかった。
-A: 閉ループ系のH∞ノルムを最小化するfを求め、LQRの最適解と比較する予定でしたが、最後まで説明できずすみません。

-Q: |Tzw|∞ は感度関数になる?
-A: Tzw が感度関数になるか?という意味と思いますが、一般化プラントの設定次第でそうなります(例えば目標値信号を w、偏差を z に選ぶ場合など)。次々回、その場合を扱います。

** &color(green){[lecture #5]}; 2015.10.15 relation between LQR and H infinity control problem (2/2) [#w4c0811d]

+ complete the table in simple example
+ behavior of hinfsyn in &ref(ex1008.m);
+ confirm the cost function J for both controllers by simulation &ref(mod1015.mdl);
+ confirm the closed-loop H infinity norm for both controllers by simulation (common mdl file is available)
-- review: steady-state response (see photo 8 @ lec. #2)
-- how to construct the worst-case disturbance w(t) which maximizes L2 norm of z(t) ?
-- what is the worst-case disturbance in the simple example ?  
+ general case: &ref(hinf.pdf); includes the simple example as a special case
-- LQR &ref(lqr.pdf); is included as a special case where gamma -> infinity, non-zero x(0), and B2 -> B

 %-- 10/15/2015 1:14 PM --%
 ex1008
 K
 dcgain(K)
 gopt
 ex1008
 mod1015
 f
 f = 1
 x0 = 0
 h = 0.1
 zz
 zz(end)
 h = 1e-6
 zz(end)
 f = -1+sqrt(2)
 h
 zz(end)
 x0 = 1
 zz(end)
 f
 h
 h = 10
 zz(end)/ww(end)
 x0
 x0 = 0
 zz(end)/ww(end)
 sqrt(zz(end)/ww(end))
 h
 h = 100
 sqrt(zz(end)/ww(end))

#ref(2015.10.15-1.jpg,left,noimg,whiteboard #1);
#ref(2015.10.15-2.jpg,left,noimg,whiteboard #2);


** &color(green){[lecture #6]}; 2015.10.22 Mixed sensitivity problem 1/3 [#tfbf02f5]

+ review &ref(map_v1.0_intro1.pdf); and outline
+ H infinity control problem (general form)
+ reference tracking problem
+ weighting function for sensitivity function
+ design example &ref(ex1022_1.m); &ref(ex1022_2.m);
+ the small gain theorem
-- proof: Nyquist stability criterion
+ from performance optimization to robust stabilization

 %-- 10/22/2015 2:06 PM --%
 ex1022_1
 eig(P)
 ex1022_2

#ref(2015.10.22-1.jpg,left,noimg,whiteboard #1);
#ref(2015.10.22-2.jpg,left,noimg,whiteboard #2);
#ref(2015.10.22-3.jpg,left,noimg,whiteboard #3);

** &color(green){[lecture #7]}; 2015.10.29 Mixed sensitivity problem 2/3 [#dd1fc284]

+ review &ref(map_v1.0_intro2.pdf); and outline
+ an equivalent problem of robust stabilization for reference tracking problem
+ uncertainty model and normalized uncertainty Delta
+ robust stabilization problem and an equivalent problem 
+ practical example of plant with perturbation &ref(ex1029_1.m);
+ how to determine the model &ref(ex1029_2.m);
+ design example and simulation &ref(ex1029_3.m); &ref(mod1029.mdl);

 %-- 10/29/2015 1:52 PM --%
 ex1029_1
 ex1029_2
 ex1029_3
 mod1029
 c
 c = 0.8

#ref(2015.10.29-1.jpg,left,noimg,whiteboard #1);
#ref(2015.10.29-2.jpg,left,noimg,whiteboard #2);
#ref(2015.10.29-3.jpg,left,noimg,whiteboard #3);

** &color(green){[lecture #8]}; 2015.11.5 Mixed sensitivity problem 3/3 [#oc5e65d6]
+ review : (1)robust stabilization and (2)performance optimization
+ mixed sensitivity problem : a sufficient condition for (1) and (2)
-- proof by definition of H infinity norm
+ construction of the generalized plant
+ design example &ref(ex1105_1.m);
+ gamma iteration by bisection method &ref(ex1105_2.m);
+ a problem of the mixed sensitivity problem: nominal performance and robust performance &ref(ex1105_3.m); 
+ introduction of robust performance problem

 %-- 11/5/2015 1:37 PM --%
 ex1105_1
 ex1105_2
 gam
 ex1105_2
 WT
 ex1105_2
 ex1105_3
 ex1105_2
 ex1105_3

#ref(2015.11.05-1.jpg,left,noimg,whiteboard #1);
#ref(2015.11.05-2.jpg,left,noimg,whiteboard #2);
#ref(2015.11.05-3.jpg,left,noimg,whiteboard #3);

** &color(green){[lecture #9]}; 2015.11.12 robust performance problem 1/3 [#tae1c2b9]
-- [[schedule2015]] mini report and exam
+ review: robust performance problem
+ an equivalent robust stability problem
+ definition of H infinity norm for general case (MIMO)
+ definition of (maximum) singular value
 M = [j, 0; -j, 1]
 M'
 eig(M'*M)
 svd(M)
+ mini report #1 &ref(report1.pdf);
-- write by hand
-- due date and place of submission -> see [[schedule2015]]
-- check if your answer is correct or not before submission by using Matlab
-- You will have a mini exam #1 related to this report
+ SVD: singular value decomposition
-- definition
 [U,S,V] = svd(M)
 M = [j, 0; -j, 1; 2, 3]
-- unitary matrix and 2 norm of vectors
-- a property of SVD: input-output interpretation
-- illustrative example: rotation matrix &ref(ex1112_1.m);
+ H infinity norm of Delta hat

 %-- 11/12/2015 1:01 PM --%
 M = [j, 0; -j, 1]
 M'
 eig(M'*M)
 svd(M)
 M = [j, 0; -j, 1]
 M'
 eig(M'*M)
 svd(M)
 (3+sqrt(5))/2
 sqrt((3+sqrt(5))/2)
 help svd
 [U,S,V] = svd(M)
 U'*U
 M = [j, 0; -j, 1; 2, 3]
 [U,S,V] = svd(M)
 V'*V
 ex1112_1

#ref(2015.11.12-1.jpg,left,noimg,whiteboard #1);
#ref(2015.11.12-2.jpg,left,noimg,whiteboard #2);
#ref(2015.11.12-3.jpg,left,noimg,whiteboard #3);
#ref(2015.11.12-4.jpg,left,noimg,whiteboard #4);

-Q: Σでノルムが決まる?→固有値で
-A: 与えられた行列Mを、入力をベクトル a、出力をベクトル b とする入出力システム
\[ b = M a \]
とみなすと、出力の2ノルムの最大値は、入力の2ノルムの
\[ \bar \sigma(M) \] 倍となります(それを超えるような a はない)。 質問の意図と違っている場合はまた聞いてください。

-Q: it was too fast
-A: This might be caused by my less explanation in Japanese. I will improve this in the next lecture. 

** &color(green){[lecture #10]}; 2015.11.19 Robust performance problem (2/3) [#la4839f6]

+ return of mini report #1
+ review and outline: robust stability problem for Delta hat and its equivalent problem(?)
+ signal vector's size is not restricted in H infinity control problem and small gain theorem
+ H infinity norm of Delta hat
+ design example: robust performance is achieved &ref(ex1119_1.m);
+ non structured uncertainty is considered ... the design problem is too conservative

 %-- 11/19/2015 1:23 PM --%
 doc hinfsyn
 ex1105_2
 ex1105_3
 gam_opt
 ex1119_1
 gam_opt
 svd([1/sqrt(2), 0; 1/sqrt(2), 0])

#ref(2015.11.19-1.jpg,left,noimg,whiteboard #1);
#ref(2015.11.19-2.jpg,left,noimg,whiteboard #2);

-Q: Delta tilder is more tractability than Delta hat, Delta hat is more solvability than Delta tilder, OK?
-A: That is right. For problems
-- (P1) robust stabilization against Delta hat
-- (P2) robust stabilization against Delta tilde,&br;
P1 is more solvable than P2 because of the smaller uncertain set. &br;
P2 is more tractable than P1 because of the ignorance of the structure.



** &color(green){[lecture #11]}; 2015.11.26 Robust performance problem (3/3) [#d50833d3]

+ review
-- robust performance problem with Delta hat and conservative design problem with Delta tilde 
-- inclusion relation between two uncertain sets
+ introduction of the scaled H infinity control problem
+ how to determine structure of scaling matrix
//+ mini report #2 &ref(report2.pdf);
+ design example &color(red){moved to next lecture};
 % less conservative design 
 ex1105_2
 ex1105_3
 ex1119_1
 gam_opt0 = gam_opt;
 K_opt0 = K_opt;
#ref(ex1126_1.m);
+ effect of scaling matrix &color(red){moved to next lecture};
#ref(ex1126_2.m);
+ mini exam #1

#ref(2015.11.26-1.jpg,left,noimg,whiteboard #1);
#ref(2015.11.26-2.jpg,left,noimg,whiteboard #2);

-Q: 薄いマーカーが見辛い
-A: すみません。次回、新しいマーカーに交換してもらいます。


** &color(green){[lecture #12]}; 2015.12.3 Robust performance problem (3/3) (cont.), Control system design for practical system (1/3) [#k0c92c66]

+ return of mini exam #1; schedule of mini report #2 and exam #2
+ review of the scaled H infinity control problem
+ comments on mu-synthesis prolem
+ design example &color(red){(moved from the previous lecture)};
 % less conservative design 
 ex1105_2
 ex1105_3
 ex1119_1
 gam_opt0 = gam_opt;
 K_opt0 = K_opt;
#ref(ex1126_1.m);
+ effect of scaling matrix &color(red){(moved from the previous lecture)};
#ref(ex1126_2.m);
+ mini report #2 &ref(report2.pdf);
-- write by hand
-- due date and place of submission -> see [[schedule2015]]
-- check if your answer is correct or not before submission by using Matlab
-- You will have a mini exam #2 related to this report
+ controller design for practical system: active noise control in duct
-- introduction of experimental setup
#ref(exp_apparatus1.jpg,left,noimg);
#ref(exp_apparatus2.jpg,left,noimg);
-- objective of control system: to drive control loudspeaker by generating proper driving signal u using reference microphone output y such that the error microphone's output z is attenuated against the disturbance input w
-- frequency response experiment
#ref(ex1203_1.m);
#ref(spk1.dat);
#ref(spk2.dat);

 %-- 12/3/2015 1:27 PM --%
 ex1105_2
 ex1105_3
 ex1119_1
 gam_opt0 = gam_opt;
 K_opt0 = K_opt;
 who
 gam_opt0
 ex1126_1
 gam_opt
 d_opt
 ex1126_2
 ex1203_1

#ref(2015.12.03-1.jpg,left,noimg,whiteboard #1);
#ref(2015.12.03-2.jpg,left,noimg,whiteboard #2);
#ref(2015.12.03-3.jpg,left,noimg,whiteboard #3);

-Q: Why 
\[ \mbox{(i) } \hat G(0.0111) \mbox{ is stable, and} \]
\[ \mbox{(ii) } \hat G(0.0103) \mbox{ is unstable,} \]
hold ?
-A: In the first design (i), controller K_opt0 and minimized value of gamma (gam_opt0) are obtained so that the H infinity norm of the resultant closed-loop system clp0 without connecting Delta tilde is less than 1. Therefore, the closed-loop system composed of clp0 and Delta tilde is stable according to the small gain theorem. 
On the other hand, in the second design (ii), controller K_opt and minimized value of gamma (gam_opt) are obtained so that the H infinity norm of the resultant closed-loop system *with scaling* (clp_d) is less than 1. Please note that there is no guarantee for the H infinity norm of the closed-loop system *without scaling* (clp_1) to be less than 1. Indeed, we confirmed that the H infinity norm of clp_1 was larger than 1 in our example, by which the closed-loop system composed of clp_1 and Delta tilde is unstable according to the small gain theorem. However, Delta hat which has diagonal structure, can be connected to clp_1 without loosing closed-loop stability. (Maybe I didn't explain the last sentence. I'm sorry for this, if this is the reason of your question.)
If this answer is not sufficient for your question, please ask again.


** &color(green){[lecture #13]}; 2015.12.10 Control system design for practical system (2/3) [#o15403b0]

+ return of mini report #2
+ review of the experimental apparatus and frequency response experiment 
+ design example
-- determination of plant model(nominal plant and additive uncertainty weight)&br;
&ref(nominal.m);&br; &ref(subspace.m); ... replacement of n4sid in System Identification Toolbox (not provided in IPC)&br;
&ref(weight.m);
-- configuration of generalized plant and controller design by scaled H infinity control problem using one-dimensional search on the scaling d&br;
&ref(cont.m);
-- comparison of closed-loop gain characteristics with and without control&br; 
&ref(compare.m);
-- result of control experiment&br;
&ref(result.dat);&br; &ref(compare_result.m);
+ room 157 @ Dept. Mech. Bldg.2

 ex1203_1
 ctrlpref
 ex1203_1
 346/3.6
 ex1203_1
 nominal
 weight
 cont
 nominal
 compare
 compare_result

#ref(2015.12.10-1.jpg,left,noimg,whiteboard #1);
#ref(2015.12.10-2.jpg,left,noimg,whiteboard #2);

-Q: Each of the files I wanted to clarify what they represent.
-A: A detailed explanation will be given in the next lecture.


** &color(green){[lecture #14]}; 2015.12.17 Control system design for practical system (3/3) [#ja8537cc]

+ final report 
++design your controller(s) so that the system performance is improved compared with the design example introduced in the previous lecture
++Draw the following figures and explain the difference between two control systems &color(red){(your controller and the design example)};:
+++bode diagram of controllers
+++gain characteristic of closed-loop system from w to z
+++time response and frequency spectrum (PSD) of control experiment
++Why is the performance of your system improved(or unfortunately deteriorated)?
--&size(30){&color(red){due date: 8th(Fri) Jan 17:00};};
--submit your report(pdf or doc) by e-mail to kobayasi@nagaokaut.ac.jp
--You can use Japanese
--maximum controller order is 35
--submit your &size(25){&color(red){controller.dat, controller_order.dat, and controller.mat};}; %%to kobayasi@nagaokaut.ac.jp%% &color(magenta){&size(30){at this page:[[participant list2015>/:~exp/seigyokougakutokuron_2015]](download is also possible)};}; &size(30){&color(red){not later than 25th(Fri) Dec};};
--You can send up to 5 controllers
--&size(25){&color(red){[[control experimental results will be uploaded here>/:~exp/seigyokougakutokuron_2015/exp]]};};
--freqresp ... frequency response will be measured and uploaded everyday
+ how to improve the performance ?
-- order of the nominal plant
-- weighting for robust stability
+ detailed explanation of m-files in the previous lecture
+ specifications of the experimental system
++ experimental equipments
-- loudspeakers: AURA SOUND NSW2-326-8A (2inch, 15W)
-- pressure sensors: NAGANO KEIKI KP15
-- A/D, D/A converters: CONTEC AD12-16(PCI), DA12-4(PCI)
-- PC: Dell Dimension 1100
-- OS: Linux kernel 2.4.22 / Real Time Linux 3.2-pre3
++ program sources for frequency response experiment
-- [[freqresp.h>/:~exp/seigyokougakutokuron_2015/freqresp.h]]
-- [[freqresp_module.c>/:~exp/seigyokougakutokuron_2015/freqresp_module.c]]
-- [[freqresp_app.c>/:~exp/seigyokougakutokuron_2015/freqresp_app.c]]
-- format of spk1.dat (u is used instead of w for spk2.dat) 
---1st column ... frequency (Hz)
---2nd column ... gain from w(V) to y(V) (signal's unit is voltage (V))
---3rd column ... phase from w to y
---4th column ... gain from w to z
---5th column ... phase from w to z
++ program sources for control experiment
-- [[hinf.h>/:~exp/seigyokougakutokuron_2015/hinf.h]]
-- [[hinf_module.c>/:~exp/seigyokougakutokuron_2015/hinf_module.c]]
-- [[hinf_app.c>/:~exp/seigyokougakutokuron_2015/hinf_app.c]]
-- format of result.dat
---1st column: time (s)
---2nd column: z (V)
---3rd column: y (V)
---4th column: u (V)
---5th column: w (V)
++ configuration of control experiment
-- disturbance signal w is specified as described in hinf.h and hinf_module.c:
 #define AMP 3.0 // amplitude for disturbance
 #define DIST_INTERVAL 5 // interval step for updating w
 
 count_dist++;
 if(count_dist >= DIST_INTERVAL){
   w = AMP * (2. * rand() / (RAND_MAX + 1.) - 1.); // uniform random number in [-AMP, AMP]
   count_dist = 0;
 }
 
 da_conv(V_OFFSET + w, 0); // D/A output to noise source
w is updated with 1ms period (sampling period 0.2ms times DIST_INTERVAL 5)
-- control signal u is limited to [-4, 4] as specified in hinf.h and hinf_module.c:
 #define U_MAX 4.00
 
 if(u > U_MAX) u = U_MAX;
 if(u < -U_MAX) u = -U_MAX;
u is set to 0 for t < 10(s). (controller is operated for 10 <= t < 15.)
-- a high pass filter with cut-off frequency are used to cut DC components in z and y as described in hinf.h and hinf_module.c
 // HPF(1 rad/s) to cut DC in z and y
 #define AF 9.9980001999866674e-01  
 #define BF 1.9998000133326669e-04
 #define CF -1.0000000000000000e+00
 #define DF 1.0000000000000000e+00
 
 ad_conv(&yz); // A/D input
 
 // HPFs
 yf = CF*xf_y + DF*yz[0];
 xf_y = AF*xf_y + BF*yz[0];
 zf = CF*xf_z + DF*yz[1];
 xf_z = AF*xf_z + BF*yz[1];
//
%%[[experiment directory>/:~exp/seigyokougakutokuron_2015]]%%
//
+ mini exam #2

 %-- 12/17/2015 1:36 PM --%
 help bodemag

#ref(2015.12.17-1.jpg,left,noimg,whiteboard #1);

-Q: I wanted to make a print on the final report.
-A: Do you mean you want to submit your report in hard copy? If so, I will receive it. 

//[[network camera>/:~exp/picture/image.jpg]]

//#ref(2014.12.18-1.jpg,left,noimg,whiteboard #1);
//#ref(2014.12.18-2.jpg,left,noimg,whiteboard #2);



** &color(green){[lecture #15]}; 2015.12.24 Control system design for practical system (cont.) [#a165727c]

- preparation of your own controller(s)
-- submission procedure of controllers has been changed
-- wav file is available
- questionnaires
-- to university
-- for web-based experimental environment

 %-- 12/24/2015 1:11 PM --%
 compare

#ref(2015.12.24-1.jpg,left,noimg,whiteboard #1);

//■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
&color(black,red){&size(20){!!! the remaining page is under construction (the contents below are from 2014) !!!};};
//&color(black,red){&size(20){!!! the remaining page is under construction (the contents below are from 2014) !!!};};
//

 %-- 12/25/2014 12:58 PM --%
 load cont.mat
 who
 K_opt
 who
 Kd
 who
 Ghat
 load result.dat
 plot(result(:,1), result(:,2))
 plot(result(:,1), result(:,3))
 who
 bode(K_opt)
 bode(Kd)
 Kd1 = Kd
 K_opt1 = K_opt
 load cont.mat
 bode(K_opt1, 'b', K_opt, 'r')
 bode(Kd1, 'b', Kd, 'r')
 Kd_tmp = c2d(K_opt1, 0.000001);
 bode(Kd1, 'b', Kd, 'r', Kd_tmp, 'm')
 clear all
 load cont.mat
 who
 bode(K_opt)
 K_example = K_opt;
 load cont.mat
 bode(K_example, 'b', K_opt, 'r')

#ref(2014.12.25-1.jpg,left,noimg,whiteboard #1);
#ref(2014.12.25-2.jpg,left,noimg,whiteboard #2);

//**related links [#g1a68a2b]
//-東ティモール工学部復興支援/support of rehabilitation for faculty of eng. National University of Timor-Leste
//--[[How to control objects>/:~kobayasi/easttimor/2009/index.html]] to design, to simulate and to experiment control system by using MATLAB/Simulink with an application of Inverted Pendulum
//--[[Prof. Kimura's page>http://sessyu.nagaokaut.ac.jp/~kimuralab/index.php?%C0%A9%B8%E6%B9%A9%B3%D8%C6%C3%CF%C0]]

トップ   編集 差分 履歴 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS