#author("2022-12-23T11:59:42+09:00","default:exp","exp") #author("2022-12-23T12:01:17+09:00","default:exp","exp") [[授業]] [[最新回へ>#j0071b52]] 担当:小林、TA:M1村田、渡辺 [[スケジュール2022]](変更の可能性あり) *第1回(2022.9.2) ガイダンス、&color(red){前半(古典制御)}; 概要〜第5章 周波数応答 [#x1f5132c] - シラバス &ref(syllabus.pdf); (変更あり) - 成績の評価方法と評価項目 //(変更の可能性あり。試験が実施できなくなった場合、レポートのみで最終成績をつけます。) -- 前半:レポート(36% = 6点×6回=36点)、中間テスト(64%) -- 後半:レポート(36% = 6点×6回=36点)、期末テスト(64%) -- 前半と後半の平均点を最終成績とする。 - 教科書&color(red){(前半、古典制御)};:[[「フィードバック制御入門」(杉江 俊治、藤田 政之 著、コロナ社)>http://www.coronasha.co.jp/np/isbn/9784339033038/]] -- 5. 周波数応答 --- 5.1 周波数応答と伝達関数 --- 5.2 ベクトル軌跡 --- 5.3 ボード線図 --- 5.4 ボード線図の性質 -- 6. フィードバック制御系の安定性 -- 8. フィードバック制御系の設計法 - 講義スライド &ref(slide01.pdf); - 演習問題# &ref(exercise01.pdf); 第2回の授業で解説する予定です。事前に問題を解いておいてください。 - グラフ用紙1 &ref(graph01.pdf); - グラフ用紙2 &ref(graph02.pdf); - ミニッツペーパー([[https://cera-e1.nagaokaut.ac.jp/ilias/ilias.php?ref_id=5560&cmdClass=ilrepositorygui&cmdNode=wc&baseClass=ilrepositorygui]]Ilias参照) レポート#1 &ref(report1.pdf); -Q: 高専時の復習をしなければと改めて実感しました。 -Q: 復習しながらがんばります。 -A: がんばってください。 -Q: 授業の参考書である「フィードバック制御入門(杉江 俊治、藤田 政之 著、コロナ社)は売店で販売してますか?または販売されていますか? -A: 当方からは売店に連絡を入れていないため、販売していたとしても冊数は少ないと思いますが、販売はされています(絶版ではないです) *第2回(2022.9.16) 第5章 周波数応答(つづき) [#m6601f4c] - レポート#1を返却しています - 講義スライド ... 第1回のつづき(5.4.2 ボード線図の利点)から - 演習問題#1(第1回で公開済)の解説をします(&color(red){解答例}; &ref(exercise01A.pdf); &ref(exercise01slide.pdf);) レポート#2 &ref(report2.pdf); -Q: zoomのurlがĪlias上から確認できないのですが、どこから参加すれば良いのでしょうか -A: ほかの授業と同様に登録済ですが、見れない場合は[[こちら>https://zoom.us/j/96740692705?pwd=M3pubDlpWnBhczJSZVlkZTNqOTBvQT09]]を使ってください。 -Q: 演習問題を再度復習します。 -Q: 高専で習ったが復習したほうがいいと思った -Q: ボード線図の書き方はある程度分かってきたので,ベクトル軌跡の復習をしっかりやっておきたいと思います. -A: 復習して分からないことがあれば質問してください。 -Q: ズームのアーカイブはありますか? -A: 今年のアーカイブは順次、Ilias の所定の場所に入ります(去年以前のアーカイブは公開していません)。 *第3回(2022.9.23) 第6章 フィードバック制御系の安定性 [#ba409a84] - 講義スライド &ref(slide03.pdf); - 演習問題#2 &ref(exercise02.pdf); 第4回の授業で解説する予定です。事前に問題を解いておいてください。 レポート#3 &ref(report3.pdf); -Q: 今までよりも少し難しかった -A: 遠慮せず質問してください。 *第4回(2022.9.30) 第6章 フィードバック制御系の安定性(つづき) [#v433bc94] - 講義スライド ... 第3回のつづき(6.3 ゲイン余裕、位相余裕)から - 演習問題#2(第3回で公開済)の解説をします (&color(red){解答例}; &ref(exercise02A.pdf); &ref(exercise02slide.pdf);) レポート#4 &ref(report4.pdf); -Q: 大体理解できたと思う -A: good!!! *第5回(2022.10.7) 第8章 フィードバック制御系の設計法 [#kbe04cbe] - 講義スライド &ref(slide05.pdf); §8.2 PID補償による制御系設計(p.24)まで - 演習問題#3 &ref(exercise03.pdf); 次回以降の授業で解説する予定です。授業範囲内の問題は、事前に解いておいてください。 レポート#5 &ref(report5.pdf); -Q: やった覚えのある内容だったが復習しないといけないと思った -A: 復習して分からないことがあれば質問してください。 -Q: ホームページでダウンロードできるスライドの20ページのNの範囲が間違っていると思います -A: ご指摘ありがとうございます。すみませんが「-」(マイナス)を削除してください。 -Q: レギュレータ問題とサーボ問題の違いは目標値が変わるか変わらないかという違いなのですか。 -A: おおざっぱにはその理解で良いです。厳密には、システムの状態を0に収束させるのがレギュレータで、システムの出力を目標値に収束させるのがサーボ系です(レギュレータには目標値が無い)。また、ステップ状の目標値も、立ち上がり後は一定値で変化しませんが、立ち上がり前から考えると変化するので注意してください。 -Q: 制御系の評価に使用するシュミレーションソフトはどんな物があるのですか。 -A: 情報処理センターで使えるものには、Matlab/Simulink があります。 -Q: pI補償などの補償とはどういう意味なのでしょうか。 -A: 辞書によると、(損失・費用などを)補い償うこと、という意味です。例えば、制御対象の出力信号がステップ外乱を受けて目標値から外れた場合に、PI補償器は出力信号が目標値に収束するように誤差を補い償います。 -Q: 行き過ぎ時間はpeak timeらしいです。 -A: ご指摘ありがとうございます。授業中に説明できず失礼しました。 *第6回(2022.10.14) 第8章 フィードバック制御系の設計法(つづき) [#bc077898] - 講義スライド ... 第5回のつづき(8.3 位相進み-遅れ補償による制御系設計)から //- %%演習問題#3(第5回で公開済)の解説をします%%&color(red){次回に延期};(&color(red){解答例}; &ref(exercise03A.pdf); &ref(exercise03slide.pdf);) レポート#6 &ref(report6.pdf); -Q: 複雑だったのでよく復習をしたいと思った -A: 授業中に質問してもらえると(他の人もおそらく分かっていないのでお互いに)助かります。 *第7回(2022.10.21) 第8章 フィードバック制御系の設計法(つづき) [#u1531074] - 講義スライド ... 第6回のつづき 55枚目から - 演習問題#3(第5回で公開済)の解説 &ref(exercise03.pdf); &color(red){解答例}; &ref(exercise03A.pdf); &ref(exercise03slide.pdf); -Q: 理解度が上がった -A: それは良かったです。 -Q: テストで定規と電卓は持ち込んで良いですか -A: ダメです。 -Q: 中間テストの持ち込みは可能ですか? -A: 持ち込んで良いものは特にありません(筆記用具のみ可)。 *第8回(2022.10.28) 中間テスト [#wa703c05] - 学生証を提示の上、指定された席で受験すること。 - 筆記用具のみ持ち込み可、電卓などは不可。 &color(red){&size(25){2022.10.31 前半の成績を掲示しています。レポート返却場所にて。確認してください。採点結果に疑義がある場合は申し出ること。};}; //- 質問があれば受け付けます。 *第9回(2022.11.4) &color(red){後半(現代制御)};概要〜第1章 システムを状態方程式で記述する [#gdb3cf5d] &color(blue,orange){後半の目的:与えられた物理系に対して、最適制御系を設計できるようになる}; //- シラバス &ref(syllabus.pdf); //- 成績の評価方法と評価項目:レポート(36% = 6点×6回=36点)、期末テスト(64%) -教科書:[[「演習で学ぶ現代制御理論」(森 泰親 著、森北出版)>https://www.morikita.co.jp/books/book/2368/]] - 古典制御と現代制御の違い(長所と短所) - 伝達関数と状態空間表現の関係(簡単な運動方程式を例に) レポート#7 &ref(report7.pdf); #ref(2022.11.04-1.jpg,left,noimg,板書1) #ref(2022.11.04-2.jpg,left,noimg,板書2) #ref(2022.11.04-3.jpg,left,noimg,板書3) -Q: やったことのある内容だったがほとんど覚えていなかったので復習したいと思った -A: やったことがある、と覚えていれば話は早いです。 -Q: 古典制御と比べて現代制御の欠点は何ですか。 -A: 明確に回答することはできませんが、一つの例を挙げるとすれば、PID制御は現在でも産業界などで幅広く利用されています。パラメータが三つだけでコントローラの動作が直感的にイメージしやすい(現代制御ではしにくい)ということはあるかもしれません。 -Q: なぜ伝達関数と状態空間表現の変換を行う必要があるのですか。 -A: 古典制御だけ、または、現代制御だけ、で満足するなら「変換」の必要はありません。一方、両者を習得する必要がある場合、両者は完全な別物ではなく関係があるので、「変換」を行うことが「習得」の助けになると思います。 -Q: ・SSR→TFは可制御正準系などの特定の形を利用しなければ変換することが出来ないのですか。 -A: (可制御正準形で与えられているかどうかによらず)SSRの A,B,C 行列が与えられれば、対応する TF は一意に定まります。授業で説明した通りです。 -Q: ・可制御正準形以外の変換の形はありますか。また、それがある場合どの形を利用するかの判断方法はありますか。 -A: 例えば、可制御正準形の双対の、可観測正準形があります。今日示した通り、伝達関数の係数との対応関係が明らかです。一方、他に教科書で説明されているものに対角正準形があり、伝達関数の極(固有値)がA行列中に対角に並んだ構造をしていることから、変換後の状態ベクトルをバラバラに扱える(状態ベクトルの各成分が、それぞれの固有値に依存した指数関数で振る舞う)利点があります。つまり、目的次第で使い分けることになります。 *第10回(2022.11.11)第2章 システムの応答と安定性 [#pbe332ef] - 解析問題と設計問題: 解析が基本、今日は解析を扱う。特に安定性 - 古典制御における安定性:インパルス応答がt→∞で0に収束する - ⇔ 現代制御における安定性:任意の初期値に対する応答がt→∞で0に収束する - ⇔ 伝達関数の極の実部がすべて負 - ⇔ A行列の固有値の実部がすべて負 - 復習:たたみこみのラプラス変換、行列の固有値と固有ベクトル、逆行列 - 状態遷移行列の定義、状態遷移行列のラプラス変換 レポート#8 &ref(report8.pdf); #ref(2022.11.11-1.jpg,left,noimg,板書1) #ref(2022.11.11-2.jpg,left,noimg,板書2) #ref(2022.11.11-3.jpg,left,noimg,板書3) #ref(2022.11.11-4.jpg,left,noimg,板書4) *第11回(2022.11.18) 第3章 可制御性(3.3可制御性とその条件), 第5章 極配置法(5.1 フィードバック係数ベクトルを直接計算する) [#sc6fe2a1] -解析から設計へ、出力フィードバック(難)→状態フィードバック(簡単、基本) -閉ループ系のA行列 = A - BF -A-BFの固有値をFによって任意に指定できる=可制御性 -例1(Fによる固有値の指定不可)、例1'(指定可)、例1''(並列システム) -可制御性の定義 -可制御性の判定方法(可制御性行列の正則性) //-レポート対策 レポート#9 &ref(report9.pdf); #ref(2022.11.18-1.jpg,left,noimg,板書1) #ref(2022.11.18-2.jpg,left,noimg,板書2) #ref(2022.11.18-3.jpg,left,noimg,板書3) #ref(2022.11.18-4.jpg,left,noimg,板書4) *第12回(2022.11.25) 第6章 最適レギュレータ §6.1 評価関数と最適制御 [#vc87efe4] - 簡単な例題(a, x, b, u, f がすべてスカラ)... 最適制御を直感的に理解できる - (i) x(t)→0の収束する速さ、(ii) u(t)を小さく抑えること、にトレードオフがある - 極配置法では、(i),(ii)のバランスを客観的に取りにくい / 最適制御では、取れる - 最適レギュレータ問題と、その解(リカッチ方程式、P>0) - 最適制御の結果を使わずに J を最小化する f を求める ... f の二次方程式、閉ループが安定となる解を選ぶ - *1:f の二次方程式とリカッチ方程式の関係 - *2:閉ループ系の安定性と P > 0 の関係 - *3:Jの最小値を求める - q を大きくする((i) を重視する)と、|f| と |a-bf| が大きくなる レポート#10 &ref(report10.pdf); #ref(2022.11.25-1.jpg,left,noimg,板書1) #ref(2022.11.25-2.jpg,left,noimg,板書2) #ref(2022.11.25-3.jpg,left,noimg,板書3) *第13回(2022.12.2) 第6章つづき〜 §6.2 重み行列と正定・半正定、§6.3最適制御系の安定性 [#db91c682] - 行列へ拡張: q→Q≧0, r→R>0 - (半)正定行列の定義 - 対称行列の固有値と正定性の関係(演習6.6), 対称行列の固有値はすべて実数(演習6.8) &ref(授業/動的システムの解析と制御2015/proof3.pdf); - 最適制御⇒安定かつJが最小 &ref(授業/動的システムの解析と制御2015/proof4.pdf,left,証明); - 最適レギュレータの設計(演習6.3,6.4):リカッチ代数方程式の解P、P > 0 ⇒ 対応する F が閉ループ系を安定化 レポート#11 &ref(report11.pdf); #ref(2022.12.02-1.jpg,left,noimg,板書1) #ref(2022.12.02-2.jpg,left,noimg,板書2) #ref(2022.12.02-3.jpg,left,noimg,板書3) #ref(2022.12.02-4.jpg,left,noimg,板書4) *第14回(2022.12.9) §9.1状態観測器の構造 [#j0071b52] &br; + 状態xが使えない場合 + (方法1) 状態の代わりに出力yを使う = 静的出力フィードバック ⇒ NG + 別の方法:状態を推定して、それをxの代わりに使う + 状態観測器の定義:t→∞で x(t) の推定誤差が0となる + (方法2) 状態観測器? (演習9.1) + 状態フィードバック ⇒ NG + (方法3) 状態観測器((9.3)式, 演習9.2) + 状態フィードバック + 状態観測器を作る((9.3)式の導出、方法2は状態観測器にならない) + 可観測性(可制御性との関係) + 演習9.3':A - L C を安定(固有値の実部がすべて負)とする L の求め方 レポート#12 &ref(report12.pdf); #ref(2022.12.09-1.jpg,left,noimg,板書1) #ref(2022.12.09-2.jpg,left,noimg,板書2) #ref(2022.12.09-3.jpg,left,noimg,板書3) *第15回(2022.12.16) §9.3併合系の固有値 [#df6708ab] + 方法3で安定化できる理由:閉ループ系の固有値 = A - BF と A - LC の固有値(分離定理) + 方法3が評価関数Jの最小値に与える影響 + 古典制御との関係:スカラの場合を例に + LQRからLQG、ロバスト制御へ #ref(2022.12.16-1.jpg,left,noimg,板書1) #ref(2022.12.16-2.jpg,left,noimg,板書2) #ref(2022.12.16-3.jpg,left,noimg,板書3) *第8回(2022.12.23) %%期末テスト, 授業アンケート実施%%&color(red){&size(25){来年に延期};}; [#ucc2e558] &color(red){&size(25){週末の寒波の影響や大学へのバスの復旧目途が立っていないため、年内は対面で授業・試験等を実施しないよう教務係より指示がありました。よって、期末試験の実施を来年に延期します。新しい試験日程については後日連絡します。(2022.12.22 )};}; - 試験内容: レポート課題の中から、数値を変えて出題する - 持ち込み可能なもの: 筆記用具のみ - 学生証を提示の上、指定された席で受験すること。 *(2022.12.23) [#ia858fea] &color(red){&size(25){来年に延期した期末試験について、日程を検討した結果、実施可能な期間が短 *(2022.12.23) &color(red){&size(25){期末試験は実施しません};}; [#z38cfbef] 来年に延期した期末試験について、日程を検討した結果、実施可能な期間が短 く、受講生全員を集めて対面で試験を実施することが困難であることがわかり ました。 そこで、期末試験の実施は無しとし、後半の成績は既に提出済の6回分のレポー ト36点満点を100点満点に換算して評価することとします。 つまり、成績の評価方法について、初回のガイダンスで説明した内容を次のよ うに変更します: ●変更前 前半:レポート(36% = 6点×6回=36点)、中間テスト(64%) 後半:レポート(36% = 6点×6回=36点)、期末テスト(64%) 前半と後半の平均点を最終成績とする。 ↓ ●変更後 前半:レポート(36% = 6点×6回=36点)、中間テスト(64%) 後半:レポート(100% = (6点×6回=36点)÷36×100) 前半と後半の平均点を最終成績とする。 話が二転三転して大変申し訳ありません。 レポートのみでの成績評価は、新型コロナウィルス対応のため昨年度及び一昨 年度にも実施しており、今回の変更もそれに倣った措置です。 なお、この変更が原因で不合格となる学生はいません(もし期末試験が100点 満点だったら合格となったのに今回の変更のために不合格となる学生はいな い)。 前半・後半を含めた総合成績を掲示しました。レポート返却場所にて。 大学に登校できるようになったら確認の上、採点結果に疑義がある場合は1月6 日(月)午前中までに申し出てください。 ただ、前半の成績は10月に掲示して周知済であること、後半のレポートはすべ て返却していることから、総合成績は自分で計算できるはずです。};}; て返却していることから、総合成績は自分で計算できるはずです。 //- 試験時間: 85分 //- 授業アンケート(本科目の前半・後半をまとめて) //■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ &color(black,red){&size(20){!!!!!!!!!!!!!!!!!!!!!!!!!!!!!以下は過去の情報です!!!!!!!!!!!!!!!!!!!!!!!!!!};}; //&color(black,red){&size(20){!!!!!!!!!!!!!!!!!!!!!!!!!!!!!以下は過去の情報です!!!!!!!!!!!!!!!!!!!!!!!!!!};}; //&color(red){&size(25){2019.12.27 前半・後半を含めた総合成績を掲示しています。レポート返却場所にて。確認してください。採点結果に疑義がある場合は1月6日(月)までに申し出ること。};};