問題 1.

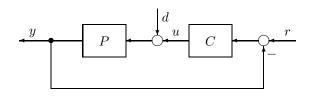
問 1. 特性多項式 $\phi(s)$ が以下で与えられる制御系を考える. 内部安定性を判定しなさい.

(1)
$$\phi(s) = s^2 - s + 1$$

(2)
$$\phi(s) = s^2 + 1$$

(1)
$$\phi(s) = s^2 - s + 1$$
 (2) $\phi(s) = s^2 + 1$ (3) $\phi(s) = 25(s - 1) + (s + 10)(s - 1)s$

問 2. 下図に示すフィードバック制御系を考える. P(s), C(s) が以下で与えられる場合について, 内部安定性を判定 しなさい.



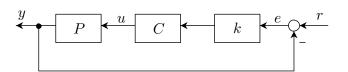
(1)
$$P(s) = \frac{1}{s-1}$$
 $C(s) = \frac{s-1}{s+1}$ (2) $P(s) = \frac{1}{s^2-4}$ $C(s) = \frac{s-2}{s+1}$

(2)
$$P(s) = \frac{1}{s^2 - 4}$$
 $C(s) = \frac{s - 2}{s + 1}$

(3)
$$P(s) = \frac{s+1}{s-1}$$
 $C(s) = \frac{1}{s+2}$

(3)
$$P(s) = \frac{s+1}{s-1}$$
 $C(s) = \frac{1}{s+2}$ (4) $P(s) = \frac{1}{s-1}$ $C(s) = \frac{1}{5s-1}$

問題 2. 下図に示すフィードバック制御系の安定性を考える. 以下の 問 1-7 に答えなさい.



$$P(s) = \frac{s+1}{s-1}$$
 $C(s) = \frac{1}{s+2}$ $k > 0$

問 1. $|P(j\omega)|$, $\angle P(j\omega)$ を求め, P(s) のベクトル軌跡を描きなさい.

問 2. $|C(j\omega)|$, $\angle C(j\omega)$ を求め, C(s) のベクトル軌跡を描きなさい.

問 3. 一巡伝達関数 L(s)=kC(s)P(s) を考える. $|L(j\omega)|, \ \angle L(j\omega)$ を求めなさい.

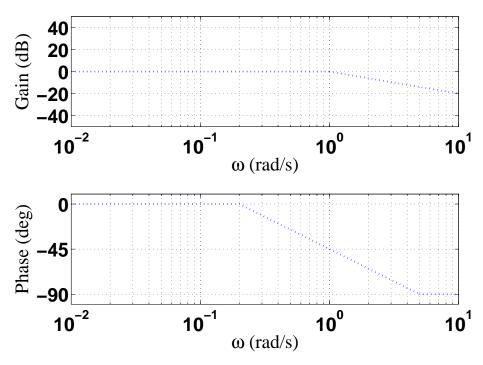
問 4. L(s) のゲイン交差角周波数 ω_{gc} を求めなさい.

問 5. k=3 とする. L(s) の $\omega=\omega_{gc}$ における位相 $\angle L(j\omega_{gc})$ を求めなさい.

問 6. k=3 とする. L(s) のナイキスト軌跡を描き、このフィードバック制御系の安定性を判別しなさい.

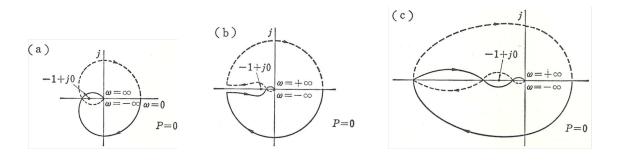
問7.このフィードバック制御系が安定となる k の範囲を求めなさい.

- 問題 3. 一巡伝達関数が $L(s)=\dfrac{K}{s(s+1)(5s+1)}$ となる制御系を考える. Bode 線図を用いて、ゲイン余裕が $\mathrm{GM}=10~\mathrm{[dB]}$ となるように定数 K を定めたい. 以下の 問 1-3 に答えなさい 1 .
- 問 1. L(s) の要素のうち、 $\frac{1}{s+1}$ の Bode 線図の折れ線近似を下図に示す。他の要素 $\frac{1}{s}$ 、 $\frac{1}{5s+1}$ の Bode 線図を、折れ線近似により書き加えなさい。



- 問 2. 問 1. の結果を用いて, L(s) の Bode 線図を折れ線近似により描きなさい.
- 問 3. 問 2. の結果を用いて、ゲイン余裕が GM=10 [dB] となるような定数 K を求めなさい.

問題 4. 一巡伝達関数 L(s) のナイキスト軌跡が 下図 (a)-(c) で与えられるフィードバック制御系を考える. ナイキストの安定判別法により、制御系の安定性を判別しなさい. ただし、図中の P は L(s) が右半平面上にもつ極の数である.



¹グラフ用紙は, 講義 HP からダウンロードしてください.