Speed control of two inertia system with servo motor

Yasuhide Kobayashi

November 28, 2019

1 Experimental setup

Fig. 1 and Table 1 show the block diagram and the equipments of the experimental system. The apparatus is mainly composed of two servo motors and a inertia-load disc connected with two couplings, a low-stiffness coupling (long shaft) and a rigid coupling. The servo motors have rotary encoders whose output pulse signal is processed by a counter to generate rotational position. Rotational speed is approximately measured by evaluating difference of rotational pulses. The driving torque of the servo motor is specified by analog voltage generated by D / A converter. Controllers are implemented as a real-time task of RT-Linux on PC.

Figure 1: Block diagram of experimental apparatus

Table 1: Experimental equipments

PC	Dell Dimension 2100 / Fedora Core 1 (RTLinux 3.2-pre3, Linux kernel 2.4.22)
D/A	CONTEC DA12-4(PCI) (12bit, $10 \mu \mathrm{~s}$)
counter	CONTEC CNT24-4(PCI)H (24bit, 1MHz)
PIO	CONTEC PIO-32/32T(PCI) (Parallel input output, 32bit 200ns)
A/D	CONTEC AD12-16(PCI) (12 bit , $\pm 5 \mathrm{~V} 10 \mu \mathrm{~s}$)
Driving \& driven motors	YASKAWA ELECTRIC CORPORATION SGD7S-1R6A00A, SGM7J-02AFA21 (rated power: 200 W , rated torque: $0.637 \mathrm{Nm}(\max 2.23 \mathrm{Nm})$, rotor inertia moment: $0.263 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$), speed/position detector: 20 -bit encoder
Shaft spring	$\phi 3 \mathrm{~mm} \times \mathrm{L} 230 \mathrm{~mm}$ (The shaft is 250 mm long.) material: SUS304
Dynamic torque meter	UTMII -20Nm (Max torque range: $\pm 20 \mathrm{~N} \cdot \mathrm{~m}$, Max output voltage: $\pm 5 \mathrm{vDC}$)
Inertial load	$\phi 60 \mathrm{~mm} \times \mathrm{T} 13 \mathrm{~mm}, \phi 80 \mathrm{~mm} \times \mathrm{T} 20 \mathrm{~mm}$ material: SS400

2 Derivation of physical model

For the given practical system, let us consider to derive a state-space representation from T_{M} to ω_{M}. The system can be regarded as a simple two-inertia system depicted in Fig. 2.

Figure 2: Two Inertia System
Define the following variables:
θ_{M} : Rotational angle of driving motor (rad)
ω_{M} : Rotational speed of driving motor ($\mathrm{rad} / \mathrm{s}$)
$J_{M}:$ Moment of inertia of driving motor $\left(\mathrm{Kg} \mathrm{m}^{2}\right)$
T_{M} : Driving torque (Nm)
θ_{L} : Rotational angle of load (rad)
ω_{L} : Rotational speed of load ($\mathrm{rad} / \mathrm{s}$)
$J_{L}:$ Moment of inertia of load $\left(\mathrm{Kg} m^{2}\right)$
T_{L} : Disturbance torque of load (Nm)
C_{L} : Damping coefficient due to friction on load
K_{S} : Torsional stiffness of shaft ($\mathrm{Nm} / \mathrm{rad}$)
C_{S} : Torsional damping coefficient of shaft
T_{S} : Torsional torque on shaft (Nm)
Let θ_{r} be a relative angle of the motor and the load as $\theta_{r}:=\theta_{M}-\theta_{L}$, then equation of motion of the system is given as following:

$$
\begin{align*}
J_{M} \dot{\omega}_{M} & =T_{M}-T_{S} \tag{1}\\
T_{S} & =K_{S} \theta_{r}+C_{S}\left(\omega_{M}-\omega_{L}\right) \tag{2}\\
J_{L} \dot{\omega}_{L} & =T_{L}+T_{S}-C_{L} \omega_{L} \tag{3}
\end{align*}
$$

Let state-space variable x be

$$
x:=\left[\begin{array}{c}
\theta_{r} \tag{4}\\
\omega_{M} \\
\omega_{L}
\end{array}\right] .
$$

State-space representation of the system from $\left[\begin{array}{ll}T_{L} & T_{M}\end{array}\right]^{T}$ to $\left[\begin{array}{ll}\omega_{L} & \omega_{M}\end{array}\right]^{T}$ is given by

$$
\begin{align*}
\frac{d}{d t}\left[\begin{array}{c}
\theta_{r} \\
\omega_{M} \\
\omega_{L}
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 1 & -1 \\
-\frac{K_{S}}{J_{M}} & -\frac{C_{S}}{J_{M}} & \frac{C_{S}}{J_{M}} \\
\frac{K_{S}}{J_{L}} & \frac{C_{S}}{J_{L}} & -\frac{C_{S}+C_{L}}{J_{L}}
\end{array}\right]\left[\begin{array}{c}
\theta_{r} \\
\omega_{M} \\
\omega_{L}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{1}{J_{M}} \\
\frac{1}{J_{L}} & 0
\end{array}\right]\left[\begin{array}{c}
T_{L} \\
T_{M}
\end{array}\right] \tag{5}\\
{\left[\begin{array}{c}
\omega_{L} \\
\omega_{M}
\end{array}\right] } & =\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\theta_{r} \\
\omega_{M} \\
\omega_{L}
\end{array}\right] \tag{6}
\end{align*}
$$

Torsional resonance frequency f_{r} and anti-resonance frequency f_{a} are given respectively as follows:

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi} \sqrt{K_{S}\left(\frac{1}{J_{L}}+\frac{1}{J_{M}}\right)}, \quad f_{a}=\frac{1}{2 \pi} \sqrt{\frac{K_{S}}{J_{L}}} \tag{7}
\end{equation*}
$$

