Speed control of two inertia system with servo motor

Yasuhide Kobayashi

November 28, 2019

1 Experimental setup

Fig. 1 and Table 1 show the block diagram and the equipments of the experimental system. The apparatus is mainly composed of two servo motors and a inertia-load disc connected with two couplings, a low-stiffness coupling (long shaft) and a rigid coupling. The servo motors have rotary encoders whose output pulse signal is processed by a counter to generate rotational position. Rotational speed is approximately measured by evaluating difference of rotational pulses. The driving torque of the servo motor is specified by analog voltage generated by D/A converter. Controllers are implemented as a real-time task of RT-Linux on PC.

Figure 1: Block diagram of experimental apparatus

Table 1: Experimental equipments	
PC	Dell Dimension 2100 / Fedora Core 1 (RTLinux 3.2-pre3, Linux kernel 2.4.22)
D/A	CONTEC DA12-4(PCI) (12bit, $10\mu s$)
counter	CONTEC CNT24-4(PCI)H (24bit, 1MHz)
PIO	CONTEC PIO-32/32T(PCI) (Parallel input output, 32bit 200ns)
A/D	CONTEC AD12-16(PCI) (12bit, $\pm 5V \ 10\mu s$)
Driving & driven motors	YASKAWA ELECTRIC CORPORATION SGD7S-1R6A00A, SGM7J-02AFA21
	(rated power: 200 W, rated torque: 0.637 Nm(max 2.23 Nm),
	rotor inertia moment: $0.263 \times 10^{-4} \text{ kg} \cdot \text{m}^2$),
	speed/position detector: 20-bit encoder
Shaft spring	ϕ 3 mm × L 230 mm (The shaft is 250 mm long.)
	material: SUS304
Dynamic torque meter	UTMII -20Nm
	(Max torque range: ± 20 N · m, Max output voltage: ± 5 vDC))
Inertial load	ϕ 60 mm \times T 13 mm, ϕ 80 mm \times T 20 mm
	material: SS400

2 Derivation of physical model

For the given practical system, let us consider to derive a state-space representation from T_M to ω_M . The system can be regarded as a simple two-inertia system depicted in Fig. 2.

Figure 2: Two Inertia System

Define the following variables:

- θ_M : Rotational angle of driving motor (rad)
- ω_M : Rotational speed of driving motor (rad/s)
- J_M : Moment of inertia of driving motor (Kg m^2)
- T_M : Driving torque (Nm)
- θ_L : Rotational angle of load (rad)
- ω_L : Rotational speed of load (rad/s)
- J_L : Moment of inertia of load (Kg m^2)
- T_L : Disturbance torque of load (Nm)
- C_L : Damping coefficient due to friction on load
- K_S : Torsional stiffness of shaft (Nm/rad)
- C_S : Torsional damping coefficient of shaft
- T_S : Torsional torque on shaft (Nm)

Let θ_r be a relative angle of the motor and the load as $\theta_r := \theta_M - \theta_L$, then equation of motion of the system is given as following:

$$J_M \dot{\omega}_M = T_M - T_S \tag{1}$$

$$T_S = K_S \theta_r + C_S (\omega_M - \omega_L) \tag{2}$$

$$J_L \dot{\omega}_L = T_L + T_S - C_L \omega_L \tag{3}$$

Let state-space variable x be

$$x := \begin{bmatrix} \theta_r \\ \omega_M \\ \omega_L \end{bmatrix}. \tag{4}$$

State-space representation of the system from $\begin{bmatrix} T_L & T_M \end{bmatrix}^T$ to $\begin{bmatrix} \omega_L & \omega_M \end{bmatrix}^T$ is given by

$$\frac{d}{dt} \begin{bmatrix} \theta_r \\ \omega_M \\ \omega_L \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ -\frac{K_S}{J_M} & -\frac{C_S}{J_M} & \frac{C_S}{J_M} \\ \frac{K_S}{J_L} & \frac{C_S}{J_L} & -\frac{C_S + C_L}{J_L} \end{bmatrix} \begin{bmatrix} \theta_r \\ \omega_M \\ \omega_L \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{J_M} \\ \frac{1}{J_L} & 0 \end{bmatrix} \begin{bmatrix} T_L \\ T_M \end{bmatrix}$$
(5)

$$\begin{bmatrix} \omega_L \\ \omega_M \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \theta_r \\ \omega_M \\ \omega_L \end{bmatrix}$$
(6)

Torsional resonance frequency f_r and anti-resonance frequency f_a are given respectively as follows:

$$f_r = \frac{1}{2\pi} \sqrt{K_S \left(\frac{1}{J_L} + \frac{1}{J_M}\right)}, \quad f_a = \frac{1}{2\pi} \sqrt{\frac{K_S}{J_L}} \tag{7}$$