

5.3 不一下線凶								
周波数 ω に対し $\left\{egin{array}{l} G(j\omega) & \mathfrak{O}$ 変化を表す $rac{f}{\sigma}$ ン曲線 $\angle G(j\omega) & \mathfrak{O}$ 変化を表す $rac{d}{\sigma}$ 相曲線								
横軸:周波数 $ω$ を対数目盛り (1 デカード(dec) $ω_2 = 10 ω_1$)								
縦軸:ゲイン曲線 20log ₁₀ G(j\arrow) デシベル値(dB)								
位相曲線 (°)度								
対値 G(jw)	0.1	1	$\sqrt{2}$	2	10	100		
デシベル値	- 20 dB	0 dB	3 dB	6 dB	20 dB	40 dB 6		
1	周波数 ω に 横軸:周波数 縦軸:ゲイン 位相曲 対値 G(jω) デシベル値	周波数 <i>ω</i> に対し 横軸:周波数 <i>ω</i> を対数 縦軸:ゲイン曲線 201 位相曲線 (°) E 対値 <i>G(jω</i>) 0.1 デシベル値 -20 dB	5.3 ボ 周波数 ω に対し $\begin{cases} G(j\omega) \\ \angle G(j\omega) \end{cases}$ 横軸:周波数 ω を対数目盛り 縦軸:ゲイン曲線 20 $\log_{10} G($ 位相曲線 (°)度	5.3 ボード線区 周波数 ω に対し $\begin{cases} G(j\omega) の変化を \angle G(j\omega) の変化を接軸:周波数 \omegaを対数目盛り (1 デス縦軸:ゲイン曲線 20log10 G(j\omega) 位相曲線 (°)度対値 G(j\omega) 0.1 1 \sqrt{2}デシベル値 -20 dB 0 dB 3 dB$	5.3 ボード線図 周波数 ω に対し $\begin{cases} G(j\omega) の変化を表すゲイ \angle G(j\omega) の変化を表す位本横軸:周波数 \omegaを対数目盛り (1 デカード(de縦軸:ゲイン曲線 20log10 G(j\omega) デシベル位相曲線 (°)度対値 G(j\omega) 0.1 1 \sqrt{2} 2デシベル値 -20 dB 0 dB 3 dB 6 dB$	5.3 ボード線図 周波数 ω に対し $\begin{cases} G(j\omega) の変化を表すゲイン曲線 \angle G(j\omega)の変化を表す位相曲線横軸:周波数 \omegaを対数目盛り (1 デカード(dec) \omega_2 =縦軸:ゲイン曲線 20log10 G(j\omega) デシベル値(dB)位相曲線 (°)度$		

第6章:フィードバック制御系の安定性	第
 6.1 フィードバック系の内部安定性 キーワード:内部安定性,特性多項式 	6.3
6.2 ナイキストの安定判別法	
キーワード : ナイキストの安定判別法	
学習目標:フィードバック制御系の内部安定性について 理解する.ナイキストの安定判別法を理解し, フィードバック制御系の安定性を判定できる ようになる. ⁶¹	学習

$$\angle w = \sum_{i=1}^{n} \angle (s - r_i) - \sum_{i=1}^{n} \angle (s - p_i)$$

$$\sum_{i=1}^{n} \angle (s - r_i) \quad \mathbf{0} \, \& \mathbf{\overline{y}} \, \mathbf{C} \, \mathbf{E} = -360^{\circ} \times \mathbf{Z}$$

$$\sum_{i=1}^{n} \angle (s - p_i) \quad \mathbf{0} \, \& \mathbf{\overline{y}} \, \mathbf{C} \, \mathbf{E} = -360^{\circ} \times \mathbf{\Pi}$$

$$\angle w \quad \mathbf{0} \, \& \mathbf{\overline{y}} \, \mathbf{C} \, \mathbf{E} = -360^{\circ} \times (\mathbf{Z} - \mathbf{\Pi})$$

$$\therefore \quad N = \mathbf{Z} - \mathbf{\Pi}$$

$$\exists_{\mathbf{T}} \mathbf{T} \, \mathbf{Z} = N + \mathbf{\Pi}$$

$$= 360^{\circ} \times \mathbf{Z} = N + \mathbf{U}$$