Speed control of two inertia system with servo motor

Yasuhide Kobayashi

December 2, 2010

1 Experimental setup

The control target is mainly composed of a servomotor and a inertia-load disc connected with pulleys and belt. The servo motor has a rotary encoder whose output pulse signal is processed by a counter to generate rotational position. Rotational speed is approximately measured by evaluating difference of rotational pulses. The driving torque of the servo motor is specified by analog voltage generated by D / A converter. Controllers are implemented as a real-time task of RT-Linux on PC.

Table 1: Experimental equipments

Driving motor	YASUKAWA ELEC. SGMAV-02A, SGDV-1R6A $0.088 \times 10^{-4} \mathrm{kgm}^{2}, 200 \mathrm{~W}, 0.637 \mathrm{Nm}(\mathrm{rated}), 1.9 \mathrm{Nm}(\mathrm{max}), 65536 \mathrm{ppr}$
PC	DELL Dimension 2100 (Celeron 1000 MHz$)$ RT-Linux $3.2 /$ Fedora core $1($ kernel 2.4 .22$)$
D/A	CONTEC DA12-4(PCI) (12bit, $10 \mu \mathrm{~s})$
Counter	CONTEC CNT24-4(PCI)H $(24 \mathrm{bit}, 1 \mathrm{MHz})$

2 Derivation of plant model

Consider a two inertia system dipicted in Fig. 1.

Figure 1: Two Inertia System
Denote variables as following:
θ_{M} : Rotational angle of driving motor (rad)
ω_{M} : Rotational speed of driving motor ($\mathrm{rad} / \mathrm{s}$)
J_{M} : Moment of inertia of driving motor $\left(\mathrm{Kg} \mathrm{m} \mathrm{m}^{2}\right)$
T_{M} : Driving torque (Nm)
θ_{L} : Rotational angle of load (rad)
ω_{L} : Rotational speed of load ($\mathrm{rad} / \mathrm{s}$)
$J_{L}:$ Moment of inertia of load $\left(\mathrm{Kg} m^{2}\right)$
$T_{L}:$ Disturbance torque of load (Nm)
C_{L} : Damping coefficient due to friction on load
K_{S} : Torsional stiffness of shaft ($\mathrm{Nm} / \mathrm{rad}$)
C_{S} : Torsional damping coefficient of shaft
T_{S} : Torsional torque on shaft (Nm)

Let θ_{r} be a relative angle of the motor and the load as $\theta_{r}:=\theta_{M}-\theta_{L}$, then equation of motion of the system is given as following:

$$
\begin{align*}
J_{M} \dot{\omega}_{M} & =T_{M}-T_{S} \tag{1}\\
T_{S} & =K_{S} \theta_{r}+C_{S}\left(\omega_{M}-\omega_{L}\right) \tag{2}\\
J_{L} \dot{\omega}_{L} & =T_{L}+T_{S}-C_{L} \omega_{L} \tag{3}
\end{align*}
$$

Let state-space variable x be

$$
x:=\left[\begin{array}{c}
\theta_{r} \tag{4}\\
\omega_{M} \\
\omega_{L}
\end{array}\right] .
$$

State-space representation of the system from T_{M} to ω_{M} is given by

$$
\begin{align*}
\frac{d}{d t}\left[\begin{array}{c}
\theta_{r} \\
\omega_{M} \\
\omega_{L}
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 1 & -1 \\
-\frac{K_{S}}{J_{M}} & -\frac{C_{S}}{J_{M}} & \frac{C_{S}}{J_{M}} \\
\frac{K_{S}}{J_{L}} & \frac{C_{S}}{J_{L}} & -\frac{C_{S}+C_{L}}{J_{L}}
\end{array}\right]\left[\begin{array}{c}
\theta_{r} \\
\omega_{M} \\
\omega_{L}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{J_{M}} \\
0
\end{array}\right] T_{M} \tag{5}\\
\omega_{M} & =\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\theta_{r} \\
\omega_{M} \\
\omega_{L}
\end{array}\right] \tag{6}
\end{align*}
$$

Torsional resonance frequency f_{r} and anti-resonance frequency f_{a} are given respectively as follows:

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi} \sqrt{K_{S}\left(\frac{1}{J_{L}}+\frac{1}{J_{M}}\right)}, \quad f_{a}=\frac{1}{2 \pi} \sqrt{\frac{K_{S}}{J_{L}}} \tag{7}
\end{equation*}
$$

