# $\mathrm{LQR} \Rightarrow J$ is minimized 

## 制御工学特論担当 小林泰秀

## 平成 27 年 10 月 1 日

Lemma 1 For a given plant

$$
\begin{equation*}
\dot{x}=A x+B u \tag{1}
\end{equation*}
$$

let $P>0$ be the solution of the algebraic Riccati equation

$$
\begin{equation*}
P A+A^{T} P+Q-P B R^{-1} B^{T} P=0 \tag{2}
\end{equation*}
$$

where $Q \geq 0$ and $R>0$ are weighting matrices for the cost function $J$ defined as

$$
\begin{equation*}
J=\int_{0}^{\infty}\left\{x^{T} Q x+u^{T} R u\right\} d t \tag{3}
\end{equation*}
$$

Suppose that the control input $u$ is given as follows：

$$
\begin{equation*}
u(t)=-F x(t), \quad F:=R^{-1} B^{T} P . \tag{4}
\end{equation*}
$$

Then，the following conditions hold．
（i）The closed－loop system is stable．
（ii）$J$ is minimized to have $J_{\min }=x^{T}(0) P x(0)$ ，where $x(0)$ is the initial state．
Proof 1 （i）：The following equation holds from the assumptions

$$
\begin{equation*}
P(A-B F)+(A-B F)^{T} P=-Q-F^{T} R F \tag{5}
\end{equation*}
$$

where $F=R^{-1} B^{T} P$ ．Since the right hand side matrix is negative definite，the following equation holds：

$$
\begin{equation*}
A_{c l}^{T} P+P A_{c l}<0 \tag{6}
\end{equation*}
$$

where $A_{c l}:=A-B F$ ．Thus，$\dot{x}=A_{c l} x$ is stable according to Lemma 2 （ii）$\Rightarrow$（i）．
（ii）：

$$
\begin{align*}
J & =\int_{0}^{\infty}\left\{x^{T} Q x+u^{T} R u\right\} d t  \tag{7}\\
& =\int_{0}^{\infty}[x^{T}\{-\underline{A^{T} P}-\underline{\underline{P A}}+\underbrace{P B R^{-1} B^{T} P}\} x+\underline{u}^{T} R u-\underline{u^{T} B^{T} P x}-\underline{\underline{x^{T} P B u}}+\underline{u}^{T} B^{T} P x+x^{T} P B u] d t \tag{8}
\end{align*}
$$

．．．the last 4 terms are 0 in summation．

$$
\begin{equation*}
=\int_{0}^{\infty}\left[-\underline{\left\{x^{T} A^{T}+u^{T} B^{T}\right\} P x}-\underline{\underline{x^{T} P\{A x+B u\}}}+\left\{x^{T} P B R^{-1}+u^{T}\right\} R\left\{R^{-1} B^{T} P x+u\right\}\right] d t \tag{9}
\end{equation*}
$$

．．．each colored terms are collected
$=-\int_{0}^{\infty} \underline{\dot{x}^{T} P x} d t-\int_{0}^{\infty} \underline{\underline{x^{T} P \dot{x}}} d t+\int_{0}^{\infty}\left\{x^{T} P B R^{-1}+u^{T}\right\} R\left\{R^{-1} B^{T} P x+u\right\} d t$
．．．from $\dot{x}=A x+B u$
$=-\left[x^{T} P x\right]_{0}^{\infty}+\int_{0}^{\infty} x^{T} P \dot{x} d t-\int_{0}^{\infty} \underline{\underline{x^{T} P \dot{x}}} d t+\int_{0}^{\infty}\left\{x^{T} P B R^{-1}+u^{T}\right\} R\left\{R^{-1} B^{T} P x+u\right\} d t$
．．．the 1 st term is integrated in parts．
$=x(0)^{T} P x(0)+\int_{0}^{\infty}\left\{x^{T} P B R^{-1}+u^{T}\right\} R\left\{R^{-1} B^{T} P x+u\right\} d t$
$\ldots$ the 2nd and 3rd terms are canceled．the 1st term is from $x(\infty)=0$ ．
Note that the 1 st term in the last equation does not depend on $u$ ．Thus，it is necessary to set $u=-R^{-1} B^{T} P x$ so that $J$ has the minimized value of $x(0)^{T} P x(0)$ ，which completes the proof．

Lemma 2 Suppose $A$ is given real square matrix. The following conditions are equivalent.
(i) $A$ is stable, i.e. the following equation holds:

$$
\begin{equation*}
\lambda_{i}(A)+\bar{\lambda}_{i}(A)<0 \quad{ }_{i} \tag{13}
\end{equation*}
$$

where $\lambda_{i}(A)$ is the eigenvalue of $A$.
(ii) There exist a positive definite matrix $P$ such that

$$
\begin{equation*}
P A+A^{T} P<0 \tag{14}
\end{equation*}
$$

Proof 2 (ii) $\Rightarrow(i)$ : Let an eigenvalue of $A$ be $\lambda$, and the corresponding eigenvector be $v$. By definition, $v \neq 0$ and $A v=\lambda v$ are satisfied. Thus, the following hold:

$$
\begin{equation*}
v^{*}\left(P A+A^{T} P\right) v=\lambda v^{*} P v+\bar{\lambda} v^{*} P v=(\lambda+\bar{\lambda}) v^{*} P v<0 \tag{15}
\end{equation*}
$$

According to the positive definiteness of $P, v^{*} P v>0$ is satisfied for any non-zero complex vector $v$. Therefore $\lambda+\bar{\lambda}<0$ holds, which completes the proof of (i).
(i) $\Rightarrow$ (ii) : omitted

