- Constant weight function:
W = ???;
- Frequency dependent weight function (1st order)
% s + w1 w2
% W(s) = w0 * ------ * ------
% w1 s + w2
w0 = ???;
w1 = 2*pi*???;
w2 = 2*pi*???;
W = nd2sys(w0*w2*[1, w1], w1*[1, w2]);
where the dimension of w1 and w2 is [rad/sec].
- Frequency dependent weight function (2nd order, notch filter)
% s^2 + 2*a*w3*s + w3^2
% W(s) = w0 * ---------------------
% s^2 + 2*b*w3*s + w3^2
w0 = ???;
w3 = 2*pi*???;
a = ???;
b = ???;
W = nd2sys([1, 2*a*w3, w3*w3], [1, 2*b*w3, w3*w3]);
- Frequency dependent weight function (series combination of the above weight functions)
% s + w1 w2 s^2 + 2*a*w3*s + w3^2
% W(s) = w0 * ------ * ------ * ---------------------
% w1 s + w2 s^2 + 2*b*w3*s + w3^2
% 1st order weight function
w0 = ???;
w1 = 2*pi*???;
w2 = 2*pi*???;
W1 = nd2sys(w0*w2*[1, w1], w1*[1, w2]);
% 2nd order weight function (notch filter)
w3 = 2*pi*???;
a = ???;
b = ???;
W2 = nd2sys(w3*[1, 2*a*w3, w3*w3], [1, 2*b*w3, w3*w3]);
% series combination
W = mmult(W1, W2);
where `nd2sys' is a Matlab function which makes a transfer function from polynomial coefficients of numerator (1st argument) and that of denominator (2nd argument), and `mmult' is a Matlab function which multiply the transfer functions given as arguments and returns the resultant multiplied transfer function.