授業

Advanced Automation

latest lecture

[lecture #1] 2019.9.5 outline of the lecture, review of classical and modern control theory (1/3)

%-- 2019/09/05 13:23 --%
s = tf('s')
P = 1/(s-1)
pole(P)
impulse(P)
k = 2
Tyr = feedback(P*k, 1)
step(Tyr)
k = 10
Tyr = feedback(P*k, 1)
step(Tyr)

[lecture #2] 2019.9.12 review of classical and modern control theory (2/3) with introduction of Matlab/Simulink

  1. introduction of Matlab and Simulink filetext_fixed.pdf Basic usage of MATLAB and Simulink used for 情報処理演習及び考究II/Consideration and Practice of Information Processing II: Advanced Course of MATLAB
    • interactive system (no compilation, no variable difinition)
    • m file
  2. system representation: Transfer Function(TF) / State-Space Representation (SSR)
    • example: mass-spring-damper system
    • difinition of SSR
    • from SSR to TF
    • from TF to SSR: controllable canonical form
  3. open-loop characteristic
    • open-loop stability: poles and eigenvalues
    • Bode plot and frequency response fileex0912_1.m filemod0912_1.mdl
      • cut off frequency; DC gain; -40dB/dec; variation of c
      • relation between P(jw) and steady-state response
  4. closed-loop stability
    • Nyquist stability criterion (for L(s):stable)
    • Nyquist plot fileex0912_2.m filemod0912_2.mdl
      • Gain Margin(GM); Phase Margin(PM)
%-- 2019/09/12 13:04 --%
a = 1
t = [1 2 3]
u = [4; 5; 6]
t'
who
b = u
who
ex0912_1
P
P.num
P.num{:}
P.den{:}
ex0912_2

[lecture #3] 2019.9.19 review of classical and modern control theory (3/3)

  1. LQR problem
    • controllability
    • cost function J >= 0
    • (semi)-positive definiteness
    • solution of LQR problem
    • example fileex0919_1.m filemod0919_1.mdl
  2. ARE and quadratic equation
    • scalar case (solve by hand)
    • matrix case filelqr.pdffileproof4.pdf (from B3「動的システムの解析と制御」)
%-- 2019/09/19 13:16 --%
ex0919_1
A
B
P
A
A'*P+P*A+Q-P*B*inv(R)*B'*P
P
Q
R
J
plot(t, J)
Jmin

[lecture #4] 2019.9.26 relation between LQR and H infinity control problem (1/2)

  1. a simple example relating LQR and H infinity control problems
    • For given plant G \[ G = \left[\begin{array}{c|c:c} a & 1 & b \\ \hline \sqrt{q} & 0 & 0 \\ 0 & 0 & \sqrt{r} \\ \hdashline 1 & 0 & 0 \end{array} \right] = \left\{ \begin{array}{l} \dot x = ax + bu + w\\ z = \left[ \begin{array}{c} \sqrt{q} x \\ \sqrt{r} u \end{array}\right] \\ x = x \end{array}\right. \] with zero initial state value x(0) = 0, find a state-feedback controller \[ u = -f x \] such that \begin{eqnarray} (i) &&\quad \mbox{closed loop is stable} \\ (ii) &&\quad \mbox{minimize} \left\{\begin{array}{l} \| z \|_2 \mbox{ for } w(t) = \delta(t) \quad \mbox{(LQR)} \\ \| T_{zw} \|_\infty \mbox{($H_\infty$ control problem)}\end{array}\right. \end{eqnarray}
    • comparison of norms in (ii) (for a = -1, b = 1, q = 1, r = 1) \[ \begin{array}{|c||c|c|}\hline & \mbox{LQR}: f=-1+\sqrt{2} & \quad \quad H_\infty: f=1\quad\quad \\ \hline\hline J=\|z\|_2^2 & & \\ \hline \|T_{zw}\|_\infty & & \\ \hline \end{array} \]
  2. an alternative description to LQR problem
    1. J = (L2 norm of z)^2
    2. impulse resp. with zero initial value = initial value resp. with zero disturbance
  3. definition of H infinity norm (SISO)
    s = tf('s');
    G1 = 1/(s+1);
    bode(G1);
    norm(G1, 'inf')
    G2 = 1/(s^2 + 0.1*s + 1);
    bode(G2);
    norm(G2, 'inf')
  4. definition of H infinity norm (SIMO)
  5. solve the problem by hand
  6. solve the problem by tool(hinfsyn) fileex0926_1.m
%-- 2019/09/26 13:55 --%
s = tf('s')
G1 = 1/(s+1);
bode(G1);
norm(G1, inf)
help norm
G2 = 1/(s^2+0.1*s+1)
bode(G2)
ctrlpref
bode(G2)
grid on
norm(G2, inf)
format long e
norm(G2, inf)

[lecture #5] 2019.10.03 relation between LQR and H infinity control problem (2/2)

  1. complete the table in simple example
  2. confirm the cost function J for both controllers by simulation filemod1003.mdl
    • block diagram in the simulink model
    • how to approximate impulse disturbance with a step function
    • impulse disturbance resp. with zero initial condition = initial condition resp. with zero disturbance
  3. confirm the closed-loop H infinity norm for both controllers by simulation
    • H infinity norm = L2 induced norm
    • review: steady-state response; the worst-case disturbance w(t) which maximizes L2 norm of z(t) ?
    • how to make the worst-case disturbance w(t)? w(t) for the simple example ?
  4. general state-feedback case: filehinf.pdf
    • includes the simple example as a special case
    • LQR filelqr.pdf is included as a special case in which gamma -> infinity, w(t) = 0, B2 -> B, and non-zero x(0) are considered
%-- 2019/10/03 13:20 --%
ex0926_1
K
bode(K)
sqrt(2)/2
sqrt(2-sqrt(2))
mod1003
h
h = 0.01
x0
x0 = 0
f = -1+sqrt(2)
zz
zz(end)
h
h = 0.00001
zz(end)
f = 1
zz(end)
x0
x0 = 1
f
zz(end)
f = -1+sqrt(2)
zz(end)
h
h = 100
x0
x0 = 0
zz(end)
sqrt(zz(end)/ww(end))
h
h = 10000
sqrt(zz(end)/ww(end))
sqrt(2-sqrt(2)) 

[lecture #6] 2019.10.10 Mixed sensitivity problem 1/3

  1. outline: filemap_v1.1_mixedsens1.pdf
    • sensitivity function S and complementary sensitivity function T
  2. H infinity control problem (general case)
    • with generalized plant G
    • including the state-feedback case
  3. reference tracking problem
    • how to translate the condition (ii) into one with H infinity norm ?
    • corresponding generalized plant G ?
    • introduction of weighting function for sensitivity function in (ii)
  4. design example fileex1010_1.m fileex1010_2.m
  5. the small gain theorem
    • proof: Nyquist stability criterion
%-- 2019/10/10 12:58 --%
ex1010_1
P
pole(P)
eig(P)
ex1010_2
K_hinf
K_hinf.a
eig(K_hinf.a)
ex1010_2

[lecture #7] 2019.10.17 Mixed sensitivity problem 2/3

  1. outline: from point to set filemap_v1.1_mixedsens2.pdf
  2. review: the small gain theorem ... robust stability = H infinity norm condition
  3. normalized uncertainty Delta
  4. uncertainty model
  5. how to determine P0 and WT
    • example: frequency response of plant with perturbation fileex1017_1.m
    • frequency response based procedure for P0 and WT fileex1017_2.m
  6. robust stabilization problem and equivalent problem
%-- 2019/10/17 13:00 --%
ex1017_1
ex1017_2
ex1017_1
ex1017_2
ex1017_3
mod1017
c
c = 0.8
c = 2

[lecture #8] 2019.10.24 Mixed sensitivity problem 3/3

  1. mixed sensitivity problem => (1) and (2) : proof
  2. generalized plant for mixed senstivity problem
  3. design example fileex1024_1.m minimize gamma by hand
  4. gamma iteration by bisection method fileex1024_2.m
  5. intro. to RP(problem of NP) fileex1024_3.m
%-- 2019/10/24 13:00 --%
ex1024_1
K
ex1024_1
ex1024_2
ex1024_3

[lecture #9] 2019.10.31 robust performance problem 1/3

  1. review
    • mixed sensitivity problem : N.P. but not R.P.
    • robust performance problem (R.P.) c.f. the last whiteboard, but can not be solved by tool
    • the small gain theorem
  2. an equivalent robust stability (R.S.) problem to R.P.
    • (i) introduction of a fictitious uncertainty Delta_p (for performance)
    • (ii) for 2-by-2 uncertainty block Delta hat which includes Delta and Delta_p
  3. definition of H infinity norm for general case (MIMO)
    • definition of singular values and the maximum singular value
      M = [1, 1i/sqrt(2); 1, -1i/sqrt(2)]
      M'
      eig(M'*M)
      svd(M)
    • mini report #1 filereport1.pdf ... You will have a mini exam #1 related to this report
  4. proof of ||Delta hat||_inf <= 1
  5. design example: fileex1031_1.m
    • robust performance is achieved but large gap
    • non structured uncertainty is considered ... the design problem is too conservative
%-- 2019/10/31 14:07 --%
M = [1, 1i/sqrt(2); 1, -1i/sqrt(2)]
M'
eig(M'*M)
svd(M)
ex1031
ex1031_1

[lecture --] 2019.11.7 canceled

[lecture #10] 2019.11.14 Robust performance problem (2/3)

  1. return of mini report #1
  2. SVD: singular value decomposition
    • definition
    • meaning of the largest singular value (a property and proof)
    • 2-norm of vectors (Euclidean norm)
    • SVD for 2-by-2 real matrix fileex1114_1.m
%-- 2019/11/14 13:17 --%
M = [1/sqrt(2), 1i; 1/sqrt(2), -1i]
[U, Sigma, V] = svd(M)
svd(M)
[U, Sigma, V] = svd(M)
U'*U
V'*V
U*Sigma*V'
U*Sigma*V'-M
ex1114_1

[lecture #11] 2019.11.21 Robust performance problem (3/3)

  1. review: R.S. prob. for Delta hat and Delta tilde
  2. scaled H infinity control problem
  3. relation between three problems
  4. how to determine structure of scaling matrix
  5. design example fileex1121_1.m
    ex1031_1
    gam2 = gam_opt
    K2 = K_opt;
    ex1121_1
    gam_opt
  6. mini report #2 filereport2.pdf
  7. mini exam #1 (10 min.)
%-- 2019/11/21 13:50 --%
ex1031_1
pwd
ex1031_1
gam2 = gam_opt
K2 = K_opt
gam2 = gam_opt
ex1121_1
gam_opt
d_opt

[lecture #12] 2019.11.28 Robust performance problem (3/3) (cont.), Control system design for practical system (1/3)

  1. return of mini exam #1
  2. review of scaling fileex1128_1.m
  3. mini report #2 filereport2.pdf
  4. introduction of a practical system: Speed control of two inertia system with servo motor
    • experimental setup
      filesetup_fixed.pdf
      filephoto.jpg
    • objective of control system = disturbance attenuation control problem: to drive the drive-side servomotor by generating proper driving signal u (T_M) using drive-side speed y (\omega_M) such that the driven-side speed z (\omega_L) is maintained at constant against the disturbance torque input w (T_L)
    • frequency response experiment and physical model of speed control system fileservo1.dat fileservo2.dat ... old data(the resonance freq. around 50Hz has been lowered in the current system)
    • room 374 @ Dept. Mech. Bldg. 2
%-- 2019/11/28 12:59 --%
ex1128_1
gam2
gam3
format long e
norm(M3_d, 'inf')
ex1128_2

[lecture #13] 2019.12.5 Control system design for practical system (2/3)

  1. return of mini report #2; ... You will have a mini exam #2 related to this report next week
  2. review of the experimental system
    • closed-loop system of 2-by-2 plant G and controller K
    • closed-loop gain is desired to be minimized for constant speed operation
    • frequency response data of G can be used; how to handle modeling error of G ?
  3. design example (modeling error for Gyu is only considered for simplicity)
    • frequency response experiment data
      servo1.dat
      servo2.dat
    • determination of plant model(nominal plant and additive uncertainty weight)
      filenominal.m
      fileweight.m
    • configuration of generalized plant and controller design by scaled H infinity control problem using one-dimensional search on the scaling d
      filecont.m
    • comparison of closed-loop gain characteristics with and without control
      filecompare.m
    • result of control experiment
      result.dat
      fileperf.m
  4. final report and remote experimental system
    1. design your controller(s) so that the system performance is improved compared with the design example
    2. Draw the following figures and explain the difference between two control systems (your controller and the design example):
      1. bode diagram of controllers
      2. gain characteristic of closed-loop system from w to z
      3. time response of control experiment
    3. Why is the performance of your system improved(or unfortunately deteriorated)?
    • due date: 6th(Mon) Jan 17:00
    • submit your report(pdf or doc) by e-mail to kobayasi@nagaokaut.ac.jp
    • You can use Japanese
    • maximum controller order is 20
    • submit your controller.dat, controller_order.dat, and controller.mat at this page:participant list2019(download is also possible) not later than 25th(Wed) Dec
    • the system will be started until next lecture
    • You can send up to 10 controllers
    • control experimental results will be uploaded here
    • freqresp ... frequency response will be measured and uploaded everyday
  5. how to improve the performance ?
    • accuracy of the nominal(physical) model
    • weighting for robust stability
  6. specifications of the experimental system
    1. program sources for frequency response experiment
      • freqresp.h
      • freqresp_module.c
      • freqresp_app.c
      • format of servo1.dat (w is used instead of u for servo2.dat)
        1st column ... frequency (Hz)
        2nd column ... gain from u(Nm) to y(rad/s)
        3rd column ... phase (deg) from u to y
        4th column ... gain from u to z
        5th column ... phase (deg) from u to z
    2. program sources for control experiment
      • hinf.h
      • hinf_module.c
      • hinf_app.c
      • format of result.dat
        1st column: time (s)
        2nd column: y (rad/s)
        3rd column: z (rad/s)
        4th column: u (Nm)
        5th column: w (Nm)
    3. configuration of control experiment
      • disturbance signal w is specified as described in hinf.h and hinf_module.c:
        w = 0; // disturbance torque for driven motor                       
        if((t > 2)&&(t < 3)){
          w = RATED_TORQ * -0.15;
        }
        if((t > 4)&&(t < 5)){
          w = RATED_TORQ * -0.1 * sin(2*M_PI*5.0 * (t-4.0));
        }
        da_conv(torq_volt_conv_1(w), 1);
      • control signal u is limited as specified in hinf.h and hinf_module.c:
        #define U_MAX (RATED_TORQ / 3.0)
        
        if(u > U_MAX) u = U_MAX;
        if(u < -U_MAX) u = -U_MAX;
        u is generated by PI control for t < 1(s). Your designed controller is started at t = 1(s).
    4. calculation of rotational speed
      • The rotational speed is approximately calculated by using difference for one sampling period in hinf_module.c and freqresp_module.c like:
        theta_rad[0] = (double)read_theta(0) / (double)Pn212 * 2.0 * M_PI;
        theta_rad[1] = (double)read_theta(1) / (double)Pn212 * 2.0 * M_PI;
        y = (theta_rad[0] - theta_rad_before[0]) / msg->sampling_period;
        z = (theta_rad[1] - theta_rad_before[1]) / msg->sampling_period;
        theta_rad_before[0] = theta_rad[0];
        theta_rad_before[1] = theta_rad[1];
        where the sampling period is given as 0.25 ms.
%-- 2019/12/05 13:03 --%
pwd
nominal
weight
cont
compare
ctrlpref
compare
perf

[lecture #14] 2019.12.12 Control system design for practical system (3/3)

[lecture #15] 2019.12.19 Control system design for practical system (cont.)

		if(flag_speed_excess == 1) u = 0; // 2018.12.19
                
#ifndef NO_CONTROL
                da_conv(torq_volt_conv_0(u), 0);
#endif
%-- 2019/12/19 13:31 --%
nominal
weight
cont
compare
perf
nominal
weight
cont
compare
perf
weight

添付ファイル: file2019.12.19-1.jpg 180件 [詳細] file2019.12.12-1.jpg 189件 [詳細] filesub.m 90件 [詳細] filenominal_ave.m 93件 [詳細] file2019.12.05-1.jpg 193件 [詳細] fileperf.m 219件 [詳細] filecompare.m 207件 [詳細] filecont.m 210件 [詳細] fileweight.m 211件 [詳細] filenominal.m 240件 [詳細] file2019.11.28-1.jpg 293件 [詳細] file2019.11.28-2.jpg 245件 [詳細] file2019.11.28-3.jpg 247件 [詳細] fileservo2.dat 175件 [詳細] fileservo1.dat 224件 [詳細] fileex1128_2.m 181件 [詳細] filesetup_fixed.pdf 383件 [詳細] filephoto.jpg 244件 [詳細] fileex1128_1.m 167件 [詳細] filereport2.pdf 300件 [詳細] file2019.11.21-1.jpg 248件 [詳細] file2019.11.21-2.jpg 210件 [詳細] file2019.11.21-3.jpg 249件 [詳細] fileex1121_1.m 174件 [詳細] file2019.11.14-1.jpg 240件 [詳細] file2019.11.14-2.jpg 160件 [詳細] file2019.11.14-3.jpg 199件 [詳細] file2019.11.14-4.jpg 201件 [詳細] fileex1114_1.m 164件 [詳細] file2019.10.31-1.jpg 222件 [詳細] file2019.10.31-2.jpg 249件 [詳細] file2019.10.31-3.jpg 229件 [詳細] file2019.10.31-4.jpg 248件 [詳細] fileex1031_1.m 188件 [詳細] filereport1.pdf 295件 [詳細] file2019.10.24-1.jpg 221件 [詳細] file2019.10.24-2.jpg 209件 [詳細] file2019.10.24-3.jpg 185件 [詳細] fileex1024_1.m 178件 [詳細] fileex1024_2.m 168件 [詳細] fileex1024_3.m 179件 [詳細] file2019.10.17-1.jpg 219件 [詳細] file2019.10.17-2.jpg 207件 [詳細] file2019.10.17-3.jpg 195件 [詳細] file2019.10.17-4.jpg 212件 [詳細] fileex1017_1.m 212件 [詳細] fileex1017_2.m 181件 [詳細] fileex1017_3.m 172件 [詳細] filemod1017.mdl 178件 [詳細] file2019.10.10-1.jpg 244件 [詳細] file2019.10.10-2.jpg 244件 [詳細] file2019.10.10-3.jpg 276件 [詳細] fileex1010_1.m 190件 [詳細] fileex1010_2.m 191件 [詳細] file2019.10.03-1.jpg 204件 [詳細] file2019.10.03-2.jpg 224件 [詳細] file2019.10.03-3.jpg 216件 [詳細] filemod1003.mdl 201件 [詳細] file2019.09.26-1.jpg 243件 [詳細] file2019.09.26-2.jpg 224件 [詳細] file2019.09.26-3.jpg 247件 [詳細] file2019.09.26-4.jpg 223件 [詳細] file2019.09.26-5.jpg 250件 [詳細] fileex0926_1.m 212件 [詳細] file2019.09.19-1.jpg 229件 [詳細] file2019.09.19-2.jpg 250件 [詳細] file2019.09.19-3.jpg 207件 [詳細] file2019.09.19-4.jpg 259件 [詳細] filemod0919_1.mdl 225件 [詳細] fileex0919_1.m 220件 [詳細] file2019.09.12-1.jpg 287件 [詳細] file2019.09.12-2.jpg 240件 [詳細] file2019.09.12-3.jpg 253件 [詳細] file2019.09.12-4.jpg 270件 [詳細] filemod0912_1.mdl 205件 [詳細] filemod0912_2.mdl 214件 [詳細] fileex0912_1.m 234件 [詳細] fileex0912_2.m 227件 [詳細] file2019.09.05-4.jpg 254件 [詳細] file2019.09.05-3.jpg 220件 [詳細] file2019.09.05-2.jpg 241件 [詳細] file2019.09.05-1.jpg 265件 [詳細]

トップ   編集 凍結 差分 履歴 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2020-10-22 (木) 14:43:33