授業

Advanced Automation 2022

latest lecture

[lecture #1] 2022.9.8 outline of the lecture, review of classical and modern control theory (1/3)

%-- 2022/09/08 13:45 --%
s = tf('s')
P = 1/(s-1)
pole(P)
impulse(P)
t = 0:0.01:3
y
y = exp(t)
hold on
plot(t, y, 'r--')
help impulse
impulse(P, 3)
plot(t, y, 'r--')
impulse(P, 3)
hold on
plot(t, y, 'r--')
P
K = 2
help step
Tyr = K/(s-1+K)
step(Tyr)
K = 20
Tyr = K/(s-1+K)
step(Tyr)

[lecture #2] 2022.9.15 review of classical and modern control theory (2/3) with introduction of Matlab/Simulink

  1. introduction of Matlab and Simulink filetext_fixed.pdf Basic usage of MATLAB and Simulink used for 情報処理演習及び考究II/Consideration and Practice of Information Processing II: Advanced Course of MATLAB
    • interactive system (no compilation, no variable definition)
    • m file
  2. system representation: Transfer Function(TF) / State-Space Representation (SSR)
    • example: mass-spring-damper system
    • definition of SSR
    • from SSR to TF
    • from TF to SSR: controllable canonical form
  3. open-loop characteristic
    • open-loop stability: poles and eigenvalues
    • Bode plot and frequency response fileex0915_1.m filemod0915_1.mdl
      • cut off frequency; DC gain; -40dB/dec; variation of c
      • relation between P(jw) and steady-state response
  4. closed-loop stability
    • Nyquist stability criterion (for L(s):stable)
    • Nyquist plot fileex0915_2.m filemod0915_2.mdl
      • Gain Margin(GM); Phase Margin(PM)
%-- 2022/09/15 13:02 --%
a = 3
b = 5
a + b
ex0915_1
sqrt(k/m)
sqrt(k/m)/(2*pi)
ex0915_1
ex0915_2

[lecture #3] 2022.9.22 review of classical and modern control theory (3/3)

  1. LQR problem
    • controllability
    • cost function J >= 0
    • positive (semi-)definite matrices
    • solution of LQR problem
    • example fileex0922_1.m filemod0922_1.mdl
  2. ARE and quadratic equation
    • scalar case (solve by hand)
    • matrix case filelqr.pdffileproof4.pdf (from B3「動的システムの解析と制御」)
%-- 2022/09/22 13:49 --%
ex0922_1
A
B
[B, A*B]
Uc
det(Uc)
J
J(end)
Jmin
F
F = [0 0]
ex0922_1
F
A'
A'*P + P*A + Q - P*B/R*B'*P
P
eig(P)

[lecture #4] 2022.9.29 relation between LQR and H infinity control problem (1/2)

  1. a simple example relating LQR and H infinity control problems
    • For given plant G \[ G = \left[\begin{array}{c|c:c} a & 1 & b \\ \hline \sqrt{q} & 0 & 0 \\ 0 & 0 & \sqrt{r} \\ \hdashline 1 & 0 & 0 \end{array} \right] = \left\{ \begin{array}{l} \dot x = ax + bu + w\\ z = \left[ \begin{array}{c} \sqrt{q} x \\ \sqrt{r} u \end{array}\right] \\ x = x \end{array}\right. \] with zero initial state value x(0) = 0, find a state-feedback controller \[ u = -f x \] such that \begin{eqnarray} (i) &&\quad \mbox{closed loop is stable} \\ (ii) &&\quad \mbox{minimize} \left\{\begin{array}{l} \| z \|_2 \mbox{ for } w(t) = \delta(t) \quad \mbox{(LQR)} \\ \| T_{zw} \|_\infty \mbox{($H_\infty$ control problem)}\end{array}\right. \end{eqnarray}
    • comparison of norms in (ii) (for a = -1, b = 1, q = 1, r = 1) \[ \begin{array}{|c||c|c|}\hline & \mbox{LQR}: f=-1+\sqrt{2} & \quad \quad H_\infty: f=1\quad\quad \\ \hline\hline J=\|z\|_2^2 & & \\ \hline \|T_{zw}\|_\infty & & \\ \hline \end{array} \]
  2. an alternative description to LQR problem
    1. J = (L2 norm of z)^2
    2. impulse resp. with zero initial value = initial value resp. with zero disturbance
  3. definition of H infinity norm (SISO)
    s = tf('s');
    G1 = 1/(s+1);
    bode(G1);
    norm(G1, 'inf')
    G2 = 1/(s^2 + 0.1*s + 1);
    bode(G2);
    norm(G2, 'inf')
  4. definition of H infinity norm (SIMO)
  5. solve the problem by hand
  6. solve the problem by tool(hinfsyn) fileex0929_1.m
%-- 2022/09/29 14:00 --%
s = tf('s');
G1 = 1/(s+1);
bode(G1);
norm(G1, 'inf')
G1d = s/(s+1);
bode(G1d);
norm(G1d, 'inf')
G2 = 1/(s^2 + 0.1*s + 1);
bode(G2);
norm(G2, 'inf')
grid on

[lecture #5] 2022.10.06 relation between LQR and H infinity control problem (2/2)

  1. cont.
    • solve the problem by hand
    • solve the problem by tool(hinfsyn) fileex0929_1.m
  2. complete the table in simple example
  3. confirm the cost function J for both controllers by simulation filemod1006.mdl
    • block diagram in the simulink model
    • how to approximate impulse disturbance with a step function
    • (unit) impulse disturbance resp. with zero initial condition = (unit) initial condition resp. with zero disturbance
  4. confirm the closed-loop H infinity norm for both controllers by simulation
    • H infinity norm = L2 induced norm
    • review: steady-state response for sinusoidal input signal; how to choose the frequency such that the output amplitude is maximized ?
    • the worst-case disturbance w(t) for the simple example ?
  5. general state-feedback case: filehinf.pdf
    • includes the simple example as a special case
    • LQR filelqr.pdf is included as a special case in which gamma -> infinity, w(t) = 0, B2 -> B, and non-zero x(0) are considered
%-- 2022/10/06 13:14 --%
ex0929_1
clp
sqrt(2-sqrt(2))
format long e
sqrt(2-sqrt(2))
format long f
format f
sqrt(2-sqrt(2))
mod1006
h = 0.01
f = -1+sqrt(2)
x0 = 0
zz
zz(end)
f
f = 1
zz(end)
h
x0
x0 = 1
zz(end)
h = 100
x0 = 0
f
sqrt(zz(end)/ww(end))
f = -1+sqrt(2)
sqrt(zz(end)/ww(end))

[lecture #6] 2022.10.13 Mixed sensitivity problem 1/3

  1. outline: filemap_v1.1_mixedsens1.pdf
    • sensitivity function S and complementary sensitivity function T
  2. H infinity control problem (general case)
    • with generalized plant G
    • including the state-feedback case
  3. reference tracking problem
    • how to translate the condition (ii) into one with H infinity norm ?
    • corresponding generalized plant G ?
    • introduction of weighting function for sensitivity function in (ii)
  4. design example fileex1013_1.m fileex1013_2.m
  5. the small gain theorem
    • proof: Nyquist stability criterion
%-- 2022/10/13 13:54 --%
ex1013_1
P
eig(P)
ex1013_2
ex1013_1
ex1013_2
K_hinf
eig(K_hinf)
G
eig(K_hinf)

[lecture #7] 2022.10.20 Mixed sensitivity problem 2/3

  1. outline: from point to set filemap_v1.1_mixedsens2.pdf
  2. the small gain theorem ... robust stability = H infinity norm condition
  3. normalized uncertainty Delta
  4. uncertainty model
  5. simple example of plant set
    • given plant P tilde
      • frequency response of plant with perturbation fileex1020_1.m
    • how to determine P0 and WT ?
      • frequency response based procedure for P0 and WT fileex1020_2.m
  6. robust stabilization problem and equivalent problem
%-- 2022/10/20 13:31 --%
ex1020_1
ex1020_2
ctrlpref
ex1020_1
ex1020_2

[lecture #8] 2022.10.27 Mixed sensitivity problem 3/3

  1. mixed sensitivity problem => (1) and (2) : proof
  2. generalized plant for mixed senstivity problem
  3. design example fileex1027_1.m minimize gamma by hand
  4. gamma iteration by bisection method fileex1027_2.m
  5. intro. to RP: weak point of mixed sensitivity problem(problem of NP) fileex1027_3.m
%-- 2022/10/27 13:01 --%
ex1020_3
ex1020_1
ex1020_2
ex1020_3
pwd
mod1020
c
c = 0.8
c = 1.3
c = 2
ex1027_1
gam
ex1027_1
ex1027_2
gam
20*log10(gam)
ex1027_2
ex1027_3
ex1027_2
ex1027_3

[lecture #9] 2022.11.10 robust performance problem 1/3

  1. review
    • mixed sensitivity problem : N.P. but not R.P.
  2. robust performance problem (R.P.), but can not be solved by tool
  3. an equivalent robust stability (R.S.) problem to R.P.
    • (i) introduction of a fictitious uncertainty Delta_p (for performance)
    • (ii) for 2-by-2 uncertainty block Delta hat which includes Delta and Delta_p
  4. definition of H infinity norm for general case (MIMO)
    • definition of singular values and the maximum singular value
      M = [1i, 0; 1i, 1]
      M'
      eig(M'*M)
      svd(M)
    • mini report #1 filereport1.pdf ... You will have a mini exam #1 related to this report
  5. proof of ||Delta hat||_inf <= 1
  6. design example: fileex1110_1.m
    • robust performance is achieved but large gap
    • non structured uncertainty is considered ... the design problem is too conservative
%-- 2022/11/10 14:16 --%
M = [1i, 0; 1i, 1]
M'
eig(M'*M)
svd(M)
sqrt((3+sqrt(2))/2)
sqrt((3+sqrt(5))/2)
ex1110_1

[lecture #10] 2022.11.17 Robust performance problem (2/3)

  1. return of mini report #1
  2. SVD: singular value decomposition
    • definition
    • meaning of the largest singular value (a property and proof)
    • 2 norm of vectors (Euclidean norm)
    • SVD for 2-by-2 real matrix fileex1117_1.m
%-- 2022/11/17 13:12 --%
M  = [1, 1; 1i/sqrt(2), -1i/sqrt(2)]
svd(M)
[U, S, V] = svd(M)
U'
U'*U
format long e
U'*U
U*U'
format short
U*U'
V*V'
ex1117_1
rand(1)
help rand
ex1117_1

[lecture #11] 2022.11.24 Robust performance problem (3/3)

  1. review : R.S. problems for structured and unstructured uncertainty
  2. scaled H infinity control problem
  3. relation between three problems
  4. how to determine structure of scaling matrix
  5. design example fileex1124_1.m
    ex1110_1
    gam2 = gam_opt
    ex1124_1
    gam_opt
  6. mini exam #1 (10 min.)
%-- 2022/11/24 13:04 --%
ex1110_1
gam_opt
gam2 = gam_opt
ex1124_1
gam_opt
gam2
ex1124_1

[lecture #12] 2022.12.1 Robust performance problem (3/3) (cont.), Control system design for practical system (1/3)

  1. return of mini exam #1
  2. review of scaling fileex1201_1.m
  3. mini report #2 filereport2.pdf
  4. introduction of a practical system: Speed control of two inertia system with servo motors
    • experimental setup
      filesetup_fixed.pdf
      filephoto.jpg
    • objective of control system = disturbance attenuation control problem: to drive the drive-side servomotor by generating proper driving signal u (T_M) using drive-side speed y (\omega_M) such that the driven-side speed z (\omega_L) is maintained at constant against the disturbance torque input w (T_L)
    • frequency response experiment and physical model of speed control system fileservo1.dat fileservo2.dat
    • room 374 @ Dept. Mech. Bldg. 2
%-- 2022/12/01 13:12 --%
pwd
ex1201_1
ex1124_1
ex1110_1
ex1124_1
%-- 2022/12/01 13:22 --%
pwd
ex1110_1
ex1124_1
ex1201_1
ex1201_2
ctrlpref
ex1201_2

[lecture #13] 2022.12.8 Control system design for practical system (2/3)

  1. return of mini report #2; ... You will have a mini exam #2 related to this report next week
  2. review of the experimental system
    • closed-loop system of 2-by-2 plant G and controller K
    • closed-loop gain is desired to be minimized for constant speed operation
    • frequency response data of G can be used; how to handle modeling error of G ?
  3. design example (modeling error for Gyu is only considered for simplicity)
    • frequency response experiment data
      servo1.dat
      servo2.dat
    • determination of plant model(nominal plant and multiplicative uncertainty weight)
      filenominal.m
      fileweight.m
    • configuration of generalized plant and controller design by scaled H infinity control problem using one-dimensional search on the scaling d
      filecont.m
    • comparison of closed-loop gain characteristics with and without control
      filecompare.m
    • result of control experiment and evaluation
      result.dat
      fileperf.m
  4. final report and remote experimental system
    1. design your controller(s) so that the system performance is improved compared with the design example
    2. Draw the following figures and explain the difference between two control systems (your controller and the design example):
      1. bode diagram of controllers
      2. gain characteristic of closed-loop system from w to z
      3. time response of control experiment
    3. Why is the performance of your system improved(or unfortunately deteriorated)?
    • due date: 4th(Wed) Jan 17:00
    • submit your report(pdf file) by e-mail to kobayasi@nagaokaut.ac.jp
    • You can use Japanese
    • maximum controller order is 20
    • submit your controller.dat, controller_order.dat, and controller.mat at this page:participant list2022(download is also possible) not later than 27th(Wed) Dec
    • the system will be started until next lecture
    • You can send up to 10 controllers
    • control experimental results will be uploaded here
    • freqresp ... frequency response will be measured and uploaded everyday
  5. how to improve the performance ?
    • accuracy of the nominal(physical) model
    • weighting for robust stability
  6. specifications of the experimental system
    1. program sources for frequency response experiment
      • freqresp.h
      • freqresp_module.c
      • freqresp_app.c
      • format of servo1.dat (w is used instead of u for servo2.dat)
        1st column ... frequency (Hz)
        2nd column ... gain from u(Nm) to y(rad/s)
        3rd column ... phase (deg) from u to y
        4th column ... gain from u to z
        5th column ... phase (deg) from u to z
    2. program sources for control experiment
      • hinf.h
      • hinf_module.c
      • hinf_app.c
      • format of result.dat
        1st column: time (s)
        2nd column: y (rad/s)
        3rd column: z (rad/s)
        4th column: u (Nm)
        5th column: w (Nm)
    3. configuration of control experiment
      • disturbance signal w is specified as described in hinf.h and hinf_module.c:
        w = 0; // disturbance torque for driven motor                       
        if((t > 2)&&(t < 3)){
          w = RATED_TORQ * -0.15;
        }
        if((t > 4)&&(t < 5)){
          w = RATED_TORQ * -0.1 * sin(2*M_PI*5.0 * (t-4.0));
        }
        da_conv(torq_volt_conv_1(w), 1);
      • control signal u is limited as specified in hinf.h and hinf_module.c:
        #define U_MAX (RATED_TORQ / 3.0)
        
        if(u > U_MAX) u = U_MAX;
        if(u < -U_MAX) u = -U_MAX;
        u is generated by PI control for t < 1(s). Your designed controller is started at t = 1(s).
    4. calculation of rotational speed
      • The rotational speed is approximately calculated by using difference for one sampling period in hinf_module.c and freqresp_module.c like:
        theta_rad[0] = (double)read_theta(0) / (double)Pn212 * 2.0 * M_PI;
        theta_rad[1] = (double)read_theta(1) / (double)Pn212 * 2.0 * M_PI;
        y = (theta_rad[0] - theta_rad_before[0]) / msg->sampling_period;
        z = (theta_rad[1] - theta_rad_before[1]) / msg->sampling_period;
        theta_rad_before[0] = theta_rad[0];
        theta_rad_before[1] = theta_rad[1];
        where the sampling period is given as 0.25 ms.
%-- 2022/12/08 13:25 --%
nominal
pwd
cd ..
nominal
weight
cont
compare
perf
pwd
cd ..
perf
weight

[lecture #14] 2022.12.16 Control system design for practical system (3/3)

[lecture #15] 2022.12.22 Control system design for practical system (cont.)


添付ファイル: file2022.12.08-1.jpg 56件 [詳細] fileperf.m 116件 [詳細] filecompare.m 112件 [詳細] filecont.m 108件 [詳細] fileweight.m 104件 [詳細] filenominal.m 91件 [詳細] file2022.12.01-3.jpg 95件 [詳細] file2022.12.01-2.jpg 80件 [詳細] file2022.12.01-1.jpg 76件 [詳細] fileservo1.dat 115件 [詳細] fileservo2.dat 106件 [詳細] fileex1201_2.m 89件 [詳細] fileex1201_1.m 96件 [詳細] filereport2.pdf 200件 [詳細] file2022.11.24-2.jpg 81件 [詳細] file2022.11.24-1.jpg 84件 [詳細] fileex1124_1.m 93件 [詳細] file2022.11.17-2.jpg 82件 [詳細] file2022.11.17-1.jpg 82件 [詳細] fileex1117_1.m 90件 [詳細] file2022.11.10-3.jpg 73件 [詳細] file2022.11.10-1.jpg 67件 [詳細] file2022.11.10-2.jpg 69件 [詳細] fileex1110_1.m 99件 [詳細] filereport1.pdf 206件 [詳細] file2022.10.27-1.jpg 88件 [詳細] file2022.10.27-2.jpg 79件 [詳細] file2022.10.27-3.jpg 76件 [詳細] fileex1027_1.m 98件 [詳細] fileex1027_2.m 110件 [詳細] fileex1027_3.m 126件 [詳細] file2022.10.20-4.jpg 87件 [詳細] file2022.10.20-3.jpg 91件 [詳細] file2022.10.20-2.jpg 88件 [詳細] file2022.10.20-1.jpg 84件 [詳細] fileex1020_1.m 142件 [詳細] fileex1020_2.m 147件 [詳細] fileex1020_3.m 130件 [詳細] filemod1020.mdl 117件 [詳細] file2022.10.13-1.jpg 93件 [詳細] file2022.10.13-2.jpg 88件 [詳細] file2022.10.13-3.jpg 87件 [詳細] fileex1013_2.m 108件 [詳細] fileex1013_1.m 113件 [詳細] file2022.10.06-2.jpg 86件 [詳細] file2022.10.06-1.jpg 87件 [詳細] filemod1006.mdl 108件 [詳細] file2022.09.29-4.jpg 103件 [詳細] file2022.09.29-3.jpg 99件 [詳細] file2022.09.29-2.jpg 92件 [詳細] file2022.09.29-1.jpg 102件 [詳細] fileex0929_1.m 144件 [詳細] file2022.09.22-4.jpg 104件 [詳細] file2022.09.22-3.jpg 91件 [詳細] file2022.09.22-2.jpg 92件 [詳細] file2022.09.22-1.jpg 124件 [詳細] filemod0922_1.mdl 109件 [詳細] fileex0922_1.m 143件 [詳細] file2022.09.15-3.jpg 84件 [詳細] file2022.09.15-2.jpg 89件 [詳細] file2022.09.15-1.jpg 91件 [詳細] filemod0915_2.mdl 109件 [詳細] filemod0915_1.mdl 122件 [詳細] fileex0915_2.m 115件 [詳細] fileex0915_1.m 136件 [詳細] file2022.09.08-4.jpg 102件 [詳細] file2022.09.08-3.jpg 94件 [詳細] file2022.09.08-2.jpg 97件 [詳細] file2022.09.08-1.jpg 95件 [詳細]

トップ   編集 凍結 差分 履歴 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2022-12-21 (水) 15:46:25