実システムの周波数応答に完全に一致する伝達関数 -- 真の伝達関数 -- を 求めることは現実的には不可能であり,通常,両者の間には,伝達関数に近似 しきれなかった誤差 -- モデル化誤差 -- が存在する. このモデル化誤差を無視して,補償器を設計・実装すると, 閉ループ伝達関数の ノルムが,設計時の見積もりを超えて劣化した り,最悪の場合,制御系が不安定になることがある. 後者は致命的であり,この場合,消音制御系は発振し,大振幅の音が二次音源 スピーカから出力されることとなる.
以降では,課題1で求めた 4 つの伝達関数を,真の伝達関数 から区別するために, , , , と表記することにしよう. これらの伝達関数は,ノミナル伝達関数(Nominal Transfer Function)と呼ば れる.
制御系が不安定となるのを防ぐためには, の 4 つの伝達関数のうち, フィードバックループを構成する伝達関数 のモデル化誤差を 考慮して を設計すれば良い. モデル化誤差の考慮の仕方は幾つかあるが,ここでは, 加法的摂動モデルを用いて,モデル化誤差を考慮することにする. この場合,真の伝達関数 は,ノミナル伝達関数 を用いて,次のように表される.
は (4)式が有効なモデルとなるように決定されなければ ならない. (4)式を について解き, の条件を適用すると,